传送门
思路分析
怎么求解呢?
其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了。可以通过编写一个 $ bool $ 函数来判断算式的值是不是0
至于如何计算这个多项式,用秦九韶算法就可以解决
细节提示 :
1.防爆 $ int $ 常用方法:模大)
2.最好用上读入优化,而且边读边取模。
3 . $ sum $ 每次都要清零
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define re register
using namespace std;
const long long mod = 1000000007;
inline int read(){
char ch = getchar();
long long f = 1 , x = 0 ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9'){x = ((x << 1) + (x << 3) + ch - '0') % mod ;ch = getchar();}
return x * f;
}
long long n,m,ans,cnt,sum;
bool flag = true;//用来判断是否有解
long long a[110],key[1000005];
inline bool calc(long long x) {
sum = 0 ;
for(re long long i = n ; i >= 1 ; --i) {
sum = ((a[i] + sum) * x) % mod;
}
sum = (sum + a[0]) % mod;
return !sum;
}
int main(){
n = read(); m = read();
for(re long long i = 0 ; i <= n ; ++i) {
a[i] = read();
}
for(re long long i = 1 ; i <= m ; ++i) {
if(calc(i)){
flag = false;
ans++;
key[++cnt] = i ;
}
}
if(flag) {
printf("%lld\n",ans);
return 0;
}
printf("%lld\n",ans);
for(re long long i = 1 ; i <= cnt ; ++i)
printf("%lld\n" , key[i]);
return 0;
}