\(\qquad\)《阶的估计基础》(潘承洞、于秀源著)一书着重展现了常见估计方法的具体过程,是关于渐近分析的一本不错的入门读物。它是在第一版《阶的估计》的精简版本,想进一步了解估计技巧的读者可阅读《阶的估计》。
\(\qquad\)书中的正文和题目由于印刷等因素出现了一些错误,加之估计渐近式常需要比较复杂的计算,所以初读《阶的估计基础》者可能会遇到一定的困难。我将习题做了一些调整,选出40个题目给出解答。本系列文章所引用的定理、例题等对应着原书相应的内容,如1.3节的推论1,指的是《阶的估计基础》一书中第1章第3节的推论1。希望读者先自己尝试,当实在无法可循时再参考解答。
\(\qquad\)当然我给出的解答并非最佳的,如果有其他解法的朋友,欢迎一起交流。

题1.\(f(x)\)为下列函数:

\[(1)\ \sqrt[\uproot{7}3]{x+\sqrt[\uproot{3}3]{x+\sqrt[\uproot{2}4]{x}}};\ \ (2)\ \sin \frac{1}{x^2}\log\Big(1+\frac{1}{x^a}\Big),a>0;\ \ (3)\ e^{\sin \frac{1}{x}+\cos \frac{1}{x}}\log \frac{1}{x+5}.\]

分别确定当\(x\to +\infty\)\(f(x)\)的等价量 .

\(\color{black}{解.}\) \((1)\ f(x)=\sqrt[\uproot{2}3]{x}\cdot \sqrt[\uproot{7}3]{1+x^{-1}\sqrt[\uproot{3}3]{x+\sqrt[\uproot{2}4]{x}}}\thicksim \sqrt[\uproot{2}3]{x},\ x\to +\infty.\)

\((2)\ f(x)=\Big(x^{-2}+o\big(x^{-4}\big)\Big)\Big(x^{-a}+o\big(x^{-a}\big)\Big)\thicksim x^{-a-2},\ x\to +\infty.\)

\((3)\ f(x)=e^{\frac{1}{x}+o\left(x^{-2}\right)+1+O\left(x^{-2}\right)}\log \frac{1}{x+5}\thicksim e^{1+\frac{1}{x}}\log \frac{1}{x},\ x\to +\infty.\qquad \vartriangleleft\)



题2.\(f(x)\)为下列函数:

\[(1)\tan^3 x-3\tan x,\ x\to \frac{\pi}{3};\ \ (2)\big(1-2x\big)^{x^{-1/2}},\ x\to 0;\ \ (3)x^x-1,\ x\to 1.\]

请分别确定\(f(x)\)的等价量 .

\(\color{black}{解.}\) \((1)\) 利用\(\text{Lagrange}\)中值定理,在\(x\)\(\frac{\pi}{3}\)间存在\(\xi\),使

\[\begin{align*}f(x)& =\tan x\Big(\tan x+\tan \frac{\pi}{3}\Big)\Big(\tan x-\tan \frac{\pi}{3}\Big)\\& =\tan x\Big(\tan x+\tan \frac{\pi}{3}\Big)\Big(x-\frac{\pi}{3}\Big)\sec^2 \xi.\end{align*}\]

于是当\(x\to \frac{\pi}{3}\)时,有

\[f(x)\thicksim \sqrt{3}\cdot 2\sqrt{3}\Big(x-\frac{\pi}{3}\Big)\sec^2 \frac{\pi}{3}=24\Big(x-\frac{\pi}{3}\Big).\]

\((2)\ \log f(x)=x^{-\frac{1}{2}}\log(1-2x)\thicksim -2\sqrt{x}.\)\(f(x)\thicksim e^{-2\sqrt{x}}\to 1,\ x\to 0\).

\((3)\ f(x)=e^{x\log x}-1\thicksim x\log x=x\log(1+x-1)\thicksim x-1,\ x\to 1.\qquad \vartriangleleft\)



题3.\(x\to +\infty\)时,按阶的大小将下列函数进行排列:

\[\left(\log x\right)^a;\ \ \left(\log\log x\right)^{\beta};\ \ x^a;\ \ x^{\left(\log x\right)^a};\ \ x^{\left(\log x\right)^{x^a}};\ \ e^{ax};\ \ e^{x^a};\ \ e^{\left(\log x\right)^A};\ \ \left(1+x\right)^a.\]

其中\(0<a<1,0<\beta<1,A>2.\)

\(\color{black}{解.}\) 将这些函数依次编号\(a_1,a_2,\cdots,a_9\),则它们阶的大小关系为

\[a_5>a_7>a_6>a_8>a_4>a_9>a_3>a_1>a_2.\]

鉴于本题和下题中的函数过多,遂略去比较的步骤,留给读者自行补充.\(\qquad \vartriangleleft\)



题4.\(a>0\),当\(x\to 0^+\)时,按阶的大小将下列函数进行排列:

\[(x+1)\sin x^2;\ \ \cos x-1;\ \ \left(1+x\right)^x-1;\ \ x^x-1;\ \ e^{2x}-1-2x^2;\]

\[\sqrt[\uproot{3}3]{1-\sqrt{x}}-1;\ \ 2^{x^2}-1;\ \ 3^{-\frac{1}{x}};\ \ e^{-\frac{a}{x}};\ \ \left(\log x\right)^{-\frac{a}{x}};\ \ \left(\log x^{-1}\right)^{\log x}.\]

\(\color{black}{解.}\) 将这些函数依次编号\(a_1,a_2,\cdots,a_{11}\),当\(a>\log 3\)时,阶的大小关系为

\[a_{10}>a_9>a_8>a_{11}>a_1=a_2=a_3=a_7>a_5>a_6>a_4.\]

\(a\leqslant \log 3\)时,\(a_{10}>a_8\geqslant a_9>a_{11}>\cdots\),其他大小关系不变.\(\qquad \vartriangleleft\)



题5. 证明:若\(0<k<1\),则

\[\int_0^1{\frac{\text{d}x}{\sqrt{\left(1-x^2\right)\left(1-k^2 x^2\right)}}}\thicksim \frac{1}{2}\log\frac{1}{1-k},\ k\to 1^-.\]

\(\color{black}{证.}\) 将积分记为\(I(k)\),并将被积函数对\(k^2\)作幂级数展开,可得

\[\begin{align*}I(k)& =\int_0^1\frac{\text{d}x}{\sqrt{1-x^2}}\left(\sum_{n=1}^{\infty}\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}k^{2n}x^{2n}\right)\\& =\sum_{n=1}^{\infty}\left({\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}k^{2n}\cdot \int_0^1{\frac{x^{2n}}{\sqrt{1-x^2}}\text{d}x}}\right)\\& =\sum_{n=1}^{\infty}\left({\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}k^{2n}\cdot \int_0^{\frac{\pi}{2}}{\sin^{2n}x\text{d}x}}\right)\\& =\frac{\pi}{2}\sum_{n=1}^{\infty}{\left(\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}\right)^2 k^{2n}}.\end{align*}\]

利用\(\text{Wallis}\)公式,我们有

\[a_n:=\frac{\pi}{2}\left(\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}\right)^2\thicksim b_n:=\frac{1}{2n},\ n\to \infty.\]

\(1.3\)节的推论\(1\),可以得到

\[I(k)\thicksim \sum_{n=1}^{\infty}{\frac{\left(k^2\right)^n}{2n}}=\frac{1}{2}\log\frac{1}{1-k^2}\thicksim \frac{1}{2}\log\frac{1}{1-k},\ k\to 1^-.\]

其中最后一步是因\(\frac{1}{2}\log\frac{1}{1+k}=O(1)\).\(\qquad \vartriangleleft\)



题6.\(\sigma>0\),若级数\(\sum_{n=1}^{\infty}\frac{a_n}{n^{\sigma}}\)收敛,则

\[\sum_{n=1}^{\infty}{a_n x^n}=o\left(\frac{1}{\left(1-x\right)^{\sigma}}\right),\ x\to 1^-.\]

\(\color{black}{证.}\) 先证明一个命题:

\(\color{blue}{引理的证明:}\)不妨设\(\{b_n\}\)递减,则\(\forall \varepsilon>0,\ \exists N\in \mathbb{N},\ \forall n>N_1,\ \text{s.t.}\ \left|\sum_{k=N_1+1}^n{a_k b_k}\right|<\frac{\varepsilon}{6}\). 固定\(n\),则\(\left\{\frac{b_n}{b_k}\right\}\)关于\(k\)单调增,由Abel引理,有

\[\left|\sum_{k=N_1+1}^n{a_k b_n}\right|=\left|\sum_{k=N_1+1}^n{a_k b_k\cdot\frac{b_n}{b_k}}\right|<\frac{\varepsilon}{6} \left(\frac{b_n}{b_{N_1+1}}+\frac{2b_n}{b_n}\right)\leqslant \frac{\varepsilon}{2}.\]

由于\(b_n\downarrow 0\),对于上述给定的\(\varepsilon,N_1\)\(\exists N_2\in \mathbb{N},\forall n>N_2,\ \text{s.t.}\ \left|(a_1+a_2+\cdots+a_{N_1})b_n\right|<\frac{\varepsilon}{2}\).

因此,当\(n>\max\{N_1,N_2\}\)时,

\[\left|\sum_{k=1}^n{a_k b_n}\right|\leqslant \left|\sum_{k=1}^{N_1}{a_k b_n}\right|+\left|\sum_{k=N_1+1}^n{a_k b_n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.\]

引理得证!\(\qquad\square\)

接原证明\(b_n=\frac{1}{n^{\sigma}}\),则\(\underset{n\to \infty}{\lim}\left(a_1+a_2+\cdots+a_n\right)n^{-\sigma}=0\).

\(\{c_n\}\)满足\(\left(1-x\right)^{-\sigma}=\sum\limits_{n=0}^{\infty}{c_n x^n}\),则

\[\left(1-x\right)^{-\sigma-1}=\frac{1}{1-x}\sum_{n=0}^{\infty}{c_n x^n}=\sum_{n=0}^{\infty}{\left(c_0+c_1+\cdots+c_n\right)x^n}.\]

因此

\[\sum_{j=0}^n{c_j}=\binom{\sigma+n}{n}=\frac{(\sigma+1)(\sigma+2)\cdots(\sigma+n)}{n!}\thicksim \frac{n^{\sigma}}{\sigma \Gamma(\sigma)},\ n\to \infty.\]

这蕴涵着\(a_1+a_2+\cdots+a_n=o\left(n^{\sigma}\right)=o(c_0+c_1+\cdots+c_n),\ n\to \infty.\)

利用1.3节的推论2,我们有

\[\sum_{n=1}^{\infty}{a_n x^n}=o\left(\sum_{n=0}^{\infty}{c_n x^n}\right)=o\left(\frac{1}{\left(1-x\right)^{\sigma}}\right),\ x\to 1^-.\]

证毕!\(\qquad \vartriangleleft\)

09-06 04:48