题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2262

  题意:LL在一个迷宫里面转,每次走向周围能走的点的概率都是一样的,现在LL要随机的走到canteen哪里,求期望。

  这个是带环的求期望问题,并且没有什么特殊性,只有列出方程,然后gauss消元了。首先用BFS求出能走的点,并判断能否走到canteen。然后列出期望方程,E[i]=Σ( E[j]*p[j] ) +1。然后好求了,注意题目中有多个canteen。。。

 //STATUS:C++_AC_437MS_700KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const LL MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End /* gauss_elimination O(n^3)
n个方程n个变元
要求系数矩阵可逆
A[][]是增广矩阵,即A[i][n]是第i个方程右边的常数bi
运行结束后A[i][n]是第i个未知数的值 */
int vis[][],cnt[][],e[][];
char g[][];
int n,m,tot,sx,sy; double A[N][N]; int gauss(int n)
{
int i,j,k,r;
for(i=;i<n;i++){
//选一行与r与第i行交换,提高数据值的稳定性
r=i;
for(j=i+;j<n;j++)
if(fabs(A[j][i]) > fabs(A[r][i]))r=j;
if(r!=i)for(j=;j<=n;j++)swap(A[r][j],A[i][j]);
//i行与i+1~n行消元
/* for(k=i+1;k<n;k++){ //从小到大消元,中间变量f会有损失
double f=A[k][i]/A[i][i];
for(j=i;j<=n;j++)A[k][j]-=f*A[i][j];
}*/
for(j=n;j>=i;j--){ //从大到小消元,精度更高
for(k=i+;k<n;k++)
A[k][j]-=A[k][i]/A[i][i]*A[i][j];
}
}
//判断方程时候有解
for(i=;i<n;i++)if(sign(A[i][i])==)return ;
//回代过程
for(i=n-;i>=;i--){
for(j=i+;j<n;j++)
A[i][n]-=A[j][n]*A[i][j];
A[i][n]/=A[i][i];
}
return ;
} int bfs()
{
int i,j,x,y,nx,ny,t;
queue<int> q;
q.push(sx*m+sy);
mem(vis,-);mem(cnt,);
vis[sx][sy]=tot=;
tot++;
while(!q.empty()){
t=q.front();q.pop();
x=t/m;y=t%m;
for(i=;i<;i++){
nx=x+dx[i];
ny=y+dy[i];
if(nx>=&&nx<n && ny>=&&ny<m && g[nx][ny]!='#'){
cnt[x][y]++;
if(vis[nx][ny]!=-)continue;
vis[nx][ny]=tot++;
q.push(nx*m+ny);
}
}
}
for(i=;i<n;i++){
for(j=;j<m;j++)
if(vis[i][j]!=- && e[i][j])return ;
}
return ;
} int main(){
// freopen("in.txt","r",stdin);
int i,j,k;
while(~scanf("%d%d",&n,&m))
{
mem(e,);
for(i=;i<n;i++){
scanf("%s",g[i]);
for(j=;j<m;j++){
if(g[i][j]=='@')sx=i,sy=j;
else if(g[i][j]=='$')e[i][j]=;
}
} if(!bfs()){
printf("-1\n");
continue;
}
mem(A,);
for(i=;i<n;i++){
for(j=;j<m;j++){
if(vis[i][j]==-)continue;
int u=vis[i][j];
double p=1.0/cnt[i][j];
if(e[i][j]){
A[u][u]=;
A[u][tot]=;
continue;
}
A[u][u]=A[u][tot]=;
for(k=;k<;k++){
int x=i+dx[k],y=j+dy[k];
if(x>=&&x<n && y>=&&y<m && vis[x][y]!=-){
A[u][vis[x][y]]=-p;
}
}
}
}
gauss(tot);
printf("%.6lf\n",A[vis[sx][sy]][tot]);
}
return ;
}
05-11 09:43