codeforces394E
如果没有在凸多边形内一点的限制,答案肯定是
如果不在凸多边形内,那么目标点肯定在凸多边形边上,我们枚举每条边,在每条边上求出距离平方和最小的点,在这些点中求出最小的
我们可以发现固定一点计算这个平方和不要O(m)的时间,只要维护x坐标平方和,x坐标的和就可以O(1)计算,但是计算起来很鬼畜
其实最后答案就是凸多边形上,离这个最近的点。
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define ll long long
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;
Ri x=0;char ch;
while(!isdigit(ch=gc))if(ch=='-')f=false;
while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}
return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
int n,m;
#define eps 1e-6
struct point{
double x,y;
il void rd(){
x=gi;y=gi;
}
point operator+(point a) {return (point){x+a.x,y+a.y};}
point operator-(point a) {return (point){x-a.x,y-a.y};}
point operator*(double a){return (point){x*a,y*a};}
point operator/(double a){return (point){x/a,y/a};}
double operator^(point a){return x*a.y-y*a.x;}//叉积
double operator&(point a){return x*a.x+y*a.y;}//点积
}p[100001],q[100001];
//q m个点的 多边形
//p n个目标点
double A,B,C;
bool inside(point a,point b,point c){//chk if a between b-c
double A=a-b&c-b;
double B=c-b&c-b;
double C=a-b^c-b;
if (fabs(C)>eps) return 0;
if (A>-eps&&A<B+eps) return 1;
return 0;
}
int in_hull(point *b,point q) {
int cnt=0;
FOR1(i,m){
if(inside(q,b[i],b[i+1])) return 2;
if((b[i]-q^b[i+1]-q)>eps) cnt++;
}
if (cnt==m||!cnt) return 1;
return 0;
}
double dist(point a,point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int main(){
FO(point);
n=gi;
FOR1(i,n)p[i].rd();
m=gi;
FOR1(i,m)q[i].rd();q[0]=q[m];
double sx,sy,sx2,sy2;sx=sy=sx2=sy2=0;
FOR1(i,n)sx+=p[i].x,sy+=p[i].y,sx2+=p[i].x*p[i].x,sy2+=p[i].y*p[i].y ;
if(in_hull(q,(point){sx/n,sy/n})){
double ans=0.0;
FOR1(i,n)ans+=dist((point){sx/n,sy/n},p[i]);
printf("%.8lf",ans);
//做到这里发现不会算不在多边形内的
}else{
sx*=2.0;sy*=2.0;
double ans=infll;
for(int i=0;i<m;i++){
int s=i,t=i+1;
double dx=q[t].x-q[s].x,dy=q[t].y-q[s].y;
double a=q[s].x,b=q[s].y;
double A=dx*dx+dy*dy,B=2*a*dx+2*b*dy-sx/n*dx-sy/n*dy;
double k=(-B)/(2*A);
if(k<0) k=0;
if(k>1) k=1;
double x=a+dx*k,y=b+dy*k;
double ss=n*(x-sx/(2.0*n))*(x-sx/(2.0*n))+sx2-(sx*sx)/(4.0*n)+n*(y-sy/(2.0*n))*(y-sy/(2.0*n))+sy2-(sy*sy)/(4.0*n);
ans=min(ans,ss);
}
printf("%.8lf\n",ans);
}
//30/07/16 09:38如果WA了就是哪里nm pq反了
//30/07/16 09:52写完发现推的不对
//
return 0;
}
套用一位大佬的话,这是一道送命题
题目要求相当于是使每一行都与第一行相等或者完全相反
那么就大概有了思路
当n>k时。肯定有没被修改的行,我们枚举这个行在哪
当n<=k时,枚举第一列的状态,统计答案
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define ll long long
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;
Ri x=0;char ch;
while(!isdigit(ch=gc))if(ch=='-')f=false;
while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}
return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
int n,m,k,map[101][101]; int main(){
FO(table);
int T=gi;
while(T--){
n=gi;m=gi;k=gi;
FOR1(i,n)FOR1(j,m)map[i][j]=gi;
if(n>k){
int res=inf,ans;
FOR1(i,n){
ans=0;
FOR1(j,n){
int cnt=0;
if(i!=j)
FOR1(k,m){
cnt+=map[i][k]^map[j][k];
}
ans+=min(cnt,m-cnt);
}
gmin(res,ans);
}
printf("%d\n",res>k?-1:res);
}else{
bool p[101];int ans=inf;
FOR0(st,1<<n){
FOR1(i,n)p[i]=st&(1<<(i-1));
// FOR1(i,n)cout<<p[i];puts("");
int res=0;
FOR1(i,n)res+=(p[i]^map[i][1]);
FOR1(i,m){
int cnt=0;
FOR1(j,n)cnt+=(p[j]^map[j][i]);
res+=min(cnt,n-cnt);
}
// cout<<res<<endl;
gmin(ans,res);
}
printf("%d\n",ans>k?-1:ans);
}
// puts("----------------------------");
}
return 0;
}
T3
还没做