//g[i,j]表示f[i,j]取最大值的方案数目 //体积最多是j 全部为0,v>=0
//体积恰好为j f[0][0]=0,f[i]=无穷,v>=0
//体积至少是j f[0][0]=0,f[i]=无穷,体积为负数时于0取大 #include <cstring>
#include <iostream>
using namespace std;
const int N = , mod = 1e9 + ;
int n, m;
int f[N], g[N];
int main() {
cin >> n >> m;
memset(f, -0x3f, sizeof f);//恰好,所以负无穷
f[] = ;
g[] = ;
for (int i = ; i < n; i ++ ) {
int v, w;
cin >> v >> w;
for (int j = m; j >= v; j -- ) {
int maxv = max(f[j], f[j - v] + w);//先求最大值
int cnt = ;
if (f[j] == maxv) cnt += g[j];//记录方案数目
if (f[j - v] + w == maxv) cnt += g[j-v];
g[j] = cnt % mod;
f[j] = maxv;
}
}
int res = ;//求最大价值
for (int i = ; i <= m; i ++ ) res = max(res , f[i]);
int cnt = ;//求最大价值时的方案数目
for (int i = ; i <= m; i ++ )
if (f[i] == res)
cnt = (cnt + g[i]) % mod;
cout << cnt << endl;
return ;
}