本题大意:有一个1X1的矩形,每边按照从小到大的顺序给n个点如图,然后对应连线将举行划分,求最大面积。
解题思路:暴力算出各点,求出各面积
#include<iostream>
#include<cmath>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<iomanip> using namespace std;
#define eps 0.0000000001
#define PI acos(-1.0) //点和向量
struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y){}
};
typedef Point Vector;
Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator-(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}
Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}
bool operator<(const Vector& a,const Vector& b){return a.x<b.x||(a.x==b.x && a.y<b.y);}
int dcmp(double x){
if(fabs(x)<eps)return ;
else return x< ? -:;
}
bool operator==(const Point& a,const Point& b){
return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;
}
double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//向量点积
double Length(Vector A){return sqrt(Dot(A,A));}//向量模长
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//向量夹角
double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);}//三角形面积的2倍
//绕起点逆时针旋转rad度
Vector Rotate(Vector A,double rad){
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
double torad(double jiao){return jiao/*PI;}//角度转弧度
double tojiao(double ang){return ang/PI*;}//弧度转角度
//单位法向量
Vector Normal(Vector A){
double L=Length(A);
return Vector(-A.y/L,A.x/L);
}
//点和直线
struct Line{
Point P;//直线上任意一点
Vector v;//方向向量,他的左边对应的就是半平面
double ang;//极角,即从x正半轴旋转到向量v所需的角(弧度)
Line(){}
Line(Point p,Vector v):P(p),v(v){ang=atan2(v.y,v.x);}
bool operator<(const Line& L)const {
return ang<L.ang;
}
};
//计算直线P+tv和Q+tw的交点(计算前必须确保有唯一交点)即:Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
}
//点到直线距离(dis between point P and line AB)
double DistanceToLine(Point P,Point A,Point B){
Vector v1=B-A , v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
}
//dis between point P and segment AB
double DistancetoSegment(Point P,Point A,Point B){
if(A==B)return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))<)return Length(v2);
else if(dcmp(Dot(v1,v3))>)return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
//point P on line AB 投影点
Point GetLineProjection(Point P,Point A,Point B){
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
//线段规范相交(只有一个且不在端点)每条线段两端都在另一条两侧,(叉积符号不同)
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
}
//判断点P是否在线段AB上
bool OnSegment(Point p,Point a1,Point a2){
return dcmp(Cross(a1-p,a2-p))== && dcmp(Dot(a1-p,a2-p))<;
}
//多边形的面积(可以是非凸多边形)
double PolygonArea(Point* p,int n){
double area=;
for(int i=;i<n-;i++)
area+=Cross(p[i]-p[],p[i+]-p[]);
return area/;
} //点p在有向直线左边,上面不算
bool OnLeft(Line L,Point p){
return Cross(L.v,p-L.P)>;
} double ok(double x,double y,double d,double z){
double f=fabs(d*(/tan(acos(z/y))+/tan(acos(z/x))))-z;
if(fabs(f)<1e-)return ;
else return f;
}
//计算凸包输入点数组p,个数n,输出点数组ch,返回凸包定点数
//输入不能有重复,完成后输入点顺序被破坏
//如果不希望凸包的边上有输入点,把两个<=改成<
//精度要求高时,建议用dcmp比较
//基于水平的Andrew算法-->1、点排序2、删除重复的然后把前两个放进凸包
//3、从第三个往后当新点在凸包前进左边时继续,否则一次删除最近加入的点,直到新点在左边
int ConVexHull(Point* p,int n,Point*ch){
sort(p,p+n);
int m=;
for(int i=;i<n;i++){//下凸包
while(m> && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=)m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-;i>=;i--){//上凸包
while(m>k && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=)m--;
ch[m++]=p[i];
}
if(n>)m--;
return m;
}
int main(){
Point point[][];
Point a[],b[],c[],d[];
for(int n;cin>>n&&n;){ point[][].x=;
point[][].y=;
for(int i=;i<n;i++){
cin>>a[i].x;
a[i].y=;
point[][i+]=a[i];
} point[n+][n+].x=;
point[n+][n+].y=;
for(int i=;i<n;i++){
cin>>b[i].x;
b[i].y=;
point[n+][i+]=b[i];
} point[n+][].x=;
point[n+][].y=;
for(int i=;i<n;i++){
cin>>c[i].y;
c[i].x=;
point[i+][]=c[i];
} point[][n+].x=;
point[][n+].y=;
for(int i=;i<n;i++){
cin>>d[i].y;
d[i].x=;
point[i+][n+]=d[i];
} for(int i=;i<n;i++){
for(int j=;j<n;j++){
point[i+][j+]=GetLineIntersection(c[i],d[i]-c[i],a[j],b[j]-a[j]);
}
} Point four[];
double max=-,area;
for(int i=;i<=n;i++){
for(int j=;j<=n+;j++){
four[]=point[i][j];
four[]=point[i][j+];
four[]=point[i+][j+];
four[]=point[i+][j];
area=PolygonArea(four,);
if(area>max)max=area;
}
}
cout<<fixed<<max<<'\n';
}return ;
}