【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

题面

BZOJ

题解

单独考虑每一个点的贡献:

因为不知道它连了几条边,所以枚举一下

\[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}
\]

因为有\(n\)个点,所以还要乘以一个\(n\)

所以,我们真正要求的就是:

\[\sum_{i=0}^{n-1}C_{n-1}^i·i^k
\]

怎么做?

看到了\(i^k\)想到了第二类斯特林数

\[m^n=\sum_{i=0}^{m}C_{m}^{i}·S(n,i)·i!
\]

所以把这个东西带回去

\[\sum_{i=0}^{n-1}C_{n-1}^i·i^k
\]

\[=\sum_{i=0}^{n-1}C_{n-1}^i·\sum_{j=0}^{i}S(k,j)·C_{i}^{j}·j!
\]

如果\(n\)在前面是没法算的,即使\(O(N)\)也是不行的

所以把后面的\(j\)丢到前面去

\[\sum_{j=0}^{n-1}S(k,j)·j!\sum_{i=j}^{n-1}C_{n-1}^iC_{i}^j
\]

后面那个是啥呢?

我们来考虑一下组合意义

有\(n-1\)个球从中选出\(i\)个染成黑色

再从\(i\)个黑球中选出\(j\)个染成白色

既然染成白色的球固定是\(j\)个

那么,我可以想先从\(n-1\)个球中选出\(j\)个直接染成白色

因为\(i\)个枚举的,相当于我可以取出任意个数染成黑色

既然有\(j\)个白球了,剩下\(n-1-j\)个球,染色或者不染色都是可以的

所以就再乘上\(2^{n-1-j}\)

\[\sum_{j=0}^{n-1}S(k,j)·j!\sum_{i=j}^{n-1}C_{n-1}^iC_{i}^j
\]

\[=\sum_{j=0}^{n-1}S(k,j)·j!·C_{n-1}^j·2^{n-1-j}
\]

\[=\sum_{j=0}^{n-1}S(k,j)·j!·\frac{(n-1)!}{j!(n-j-1)!}·2^{n-1-j}
\]

\[=\sum_{j=0}^{n-1}S(k,j)·j!·\frac{(n-1)!}{j!(n-j-1)!}·2^{n-1-j}
\]

\[=\sum_{j=0}^{n-1}S(k,j)·\frac{(n-1)!}{(n-j-1)!}·2^{n-1-j}
\]

至于\(S(k,j)\)怎么算?

不要忘记第二类斯特林数也是一个卷积的形式

戳这里去看看

那么,先算出第二类斯特林数,直接算就好啦

当然啦,对于\(j>k\),\(S(k,j)=0\)就不用枚举了

所以最多枚举到\(k\)

复杂度\(O(klogk)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 1000000
const int pr=3;
const int phi=MOD-1;
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int N,M,l,a[MAX],b[MAX],S[MAX],r[MAX];
void NTT(int *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int W=fpow(pr,phi/(i<<1));
for(int p=i<<1,j=0;j<N;j+=p)
{
int w=1;
for(int k=0;k<i;++k,w=1ll*w*W%MOD)
{
int X=P[j+k],Y=1ll*w*P[i+j+k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=((X-Y)%MOD+MOD)%MOD;
}
}
}
if(opt==-1)reverse(&P[1],&P[N]);
}
void Work()
{
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
NTT(a,1);NTT(b,1);
for(int i=0;i<N;++i)a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,-1);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)a[i]=1ll*a[i]*inv%MOD;
}
int n,K,jc[MAX],inv[MAX],ans;
int main()
{
scanf("%d%d",&n,&K);
jc[0]=inv[0]=1;
for(int i=1;i<=K;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=K;++i)inv[i]=fpow(jc[i],MOD-2);
N=M=K;
for(int i=0;i<=K;++i)a[i]=(i&1)?MOD-inv[i]:inv[i];
for(int i=0;i<=K;++i)b[i]=1ll*fpow(i,K)*inv[i]%MOD;
Work();
for(int i=0;i<=K;++i)S[i]=a[i];
int inv2=fpow(2,MOD-2);
for(int i=0,p=fpow(2,n-1),pp=1;i<=min(n-1,K);++i)
{
int t=1ll*S[i]*pp%MOD*p%MOD;
p=1ll*p*inv2%MOD;
pp=1ll*pp*(n-1-i)%MOD;
ans=(ans+t)%MOD;
}
ans=1ll*ans*n%MOD;
ans=1ll*ans*fpow(2,1ll*(n-1)*(n-2)/2%phi)%MOD;
printf("%d\n",ans);
return 0;
}
05-11 04:32