题意:给一个无向图,判断这个图是否存在奇环和偶环。
解法:网上有一种只用dfs就能做的解法,但是我不太理解。
这里用的是比较复杂的。首先奇环很简单可以用二分图染色判断。问题是偶环怎么判断?这里我们想,一旦有两个环共享了一些点,那么这两个环一定能组成一个偶环。
那么我们考虑tarjan找出所有桥删去,那么对于一个边双联通分量,这个边双只要有多于一个环就必定存在偶环。即当且仅当这个边双为一个奇环的情况下才不存在偶环,其他情况都会有偶环。
所以一旦这个边双不是单环,就必定存在偶环。
那么怎么判断这个是不是一单个环呢?点数=边数的时候就是一个单环。
细节详见代码:
#pragma comment(linker,"/STACK:102400000,102400000")
#include<bits/stdc++.h>
using namespace std;
const int N=3e5+;
int n,m,ver,edge,odd,even,col[N];
bool bridge[N]; int cnt=,head[N<<],nxt[N<<],to[N<<];
void add_edge(int x,int y) {
nxt[++cnt]=head[x]; to[cnt]=y; head[x]=cnt;
} int num,low[N],dfn[N];
void tarjan(int x,int in) {
dfn[x]=low[x]=++num;
for (int i=head[x];i;i=nxt[i]) {
int y=to[i];
if (!dfn[y]) {
tarjan(y,i);
low[x]=min(low[x],low[y]); if (low[y]>dfn[x])
bridge[i]=bridge[i^]=;
} else if (i!=(in^))
low[x]=min(low[x],dfn[y]);
}
} void dfs(int x,int fa) {
col[x]=-col[fa]; ver++;
for (int i=head[x];i;i=nxt[i]) {
if (bridge[i]) continue;
int y=to[i]; edge++;
if (y==fa) continue;
if (!col[y]) dfs(y,x);
else if (col[x]==col[y]) odd=; else even=; //染色过程判断奇偶环
}
} int main()
{
int T; cin>>T;
while (T--) {
cin>>n>>m;
cnt=; for (int i=;i<=n;i++) head[i]=;
for (int i=;i<=m;i++) {
int x,y; scanf("%d%d",&x,&y);
add_edge(x,y); add_edge(y,x);
} num=; for (int i=;i<=n;i++) dfn[i]=low[i]=;
for (int i=;i<=n;i++)
if (!dfn[i]) tarjan(i,); //找桥 odd=even=;
for (int i=;i<=n;i++) col[i]=; col[]=;
for (int i=;i<=n;i++)
if (!col[i]) {
ver=; edge=;
dfs(i,);
if (ver> && edge/!=ver) even=; //点数和边数不等,存在偶环
}
printf("%s\n",odd?"YES":"NO");
printf("%s\n",even?"YES":"NO");
for (int i=;i<=cnt;i++) bridge[i]=;
}
return ;
}