1、收集预料
- 自己写个爬虫去收集网页上的数据。
- 使用别人提供好的数据http://www.sogou.com/labs/dl/ca.html
2、对预料进行去噪和分词
- 我们需要content其中的值,通过简单的命令把非content 的标签干掉
cat news_tensite_xml.dat | iconv -f gbk -t utf- -c | grep "<content>" > corpus.txt
- 分词可以用jieba分词:
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import jieba
import jieba.analyse
import jieba.posseg as pseg
def cut_words(sentence):
#print sentence
return " ".join(jieba.cut(sentence)).encode('utf-8')
f = open("corpus.txt")
target = open("resultbig.txt", 'a+')
print 'open files'
line = f.readlines(100000)
num=0
while line:
num+=1
curr = []
for oneline in line:
#print(oneline)
curr.append(oneline)
'''
seg_list = jieba.cut_for_search(s)
words = pseg.cut(s)
for word, flag in words:
if flag != 'x':
print(word)
for x, w in jieba.analyse.extract_tags(s, withWeight=True):
print('%s %s' % (x, w))
'''
after_cut = map(cut_words, curr)
# print lin,
#for words in after_cut:
#print words
target.writelines(after_cut)
print 'saved %s00000 articles'% num
line = f.readlines(100000)
f.close()
target.close()
3、运行word2vec输出每个词的向量
./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1
输出为vectors.bin
- 然后我们计算距离的命令即可计算与每个词最接近的词了:
./distance vectors.bin
4、现在经过以上的熟悉,我们进入对关键词的聚类:
- 则只需输入一行命令即可:
./word2vec -train resultbig.txt -output classes.txt -cbow -size -window -negative -hs -sample 1e- -threads -classes
然后按类别排序,再输入另一个命令:
sort classes.txt -k -n > classes.sorted.txt