1、收集预料

2、对预料进行去噪和分词

  • 我们需要content其中的值,通过简单的命令把非content 的标签干掉

        cat news_tensite_xml.dat | iconv -f gbk -t utf- -c | grep "<content>"  > corpus.txt  
  • 分词可以用jieba分词:
    #!/usr/bin/env python
    #-*- coding:utf-8 -*-
    import jieba
    import jieba.analyse
    import jieba.posseg as pseg
    def cut_words(sentence):
    #print sentence
    return " ".join(jieba.cut(sentence)).encode('utf-8')
    f = open("corpus.txt")
    target = open("resultbig.txt", 'a+')
    print 'open files'
    line = f.readlines(100000)
    num=0
    while line:
    num+=1
    curr = []
    for oneline in line:
    #print(oneline)
    curr.append(oneline)
    '''
    seg_list = jieba.cut_for_search(s)
    words = pseg.cut(s)
    for word, flag in words:
    if flag != 'x':
    print(word)
    for x, w in jieba.analyse.extract_tags(s, withWeight=True):
    print('%s %s' % (x, w))
    '''
    after_cut = map(cut_words, curr)
    # print lin,
    #for words in after_cut:
    #print words
    target.writelines(after_cut)
    print 'saved %s00000 articles'% num
    line = f.readlines(100000)
    f.close()
    target.close()

3、运行word2vec输出每个词的向量

  • ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1 

    输出为vectors.bin

  • 然后我们计算距离的命令即可计算与每个词最接近的词了:
    ./distance vectors.bin

4、现在经过以上的熟悉,我们进入对关键词的聚类:

  • 则只需输入一行命令即可:

    ./word2vec -train resultbig.txt -output classes.txt -cbow  -size  -window  -negative  -hs  -sample 1e- -threads  -classes   
  • 然后按类别排序,再输入另一个命令:

    sort classes.txt -k  -n > classes.sorted.txt 

      

05-08 15:49