简介

Single Shot MultiBox Detector (SSD) 是一种单阶段的目标检测器。与两阶段的检测方法不同,单阶段目标检测并不进行区域推荐,而是直接从特征图回归出目标的边界框和分类概率。SSD 运用了这种单阶段检测的思想,并且对其进行改进:在不同尺度的特征图上检测对应尺度的目标。如下图所示,SSD 在六个尺度的特征图上进行了不同层级的预测。每个层级由两个3x3卷积分别对目标类别和边界框偏移进行回归。因此对于每个类别,SSD 的六个层级一共会产生 38x38x4 + 19x19x6 + 10x10x6 + 5x5x6 + 3x3x4 + 1x1x4 = 8732 个检测结果。

基于SSD的目标检测模型-LMLPHP

SSD 可以方便地插入到任何一种标准卷积网络中,比如 VGG、ResNet 或者 MobileNet,这些网络被称作检测器的基网络。在这个示例中我们使用 MobileNet

在训练时还会对图片进行数据增强,包括随机扰动、扩张、翻转和裁剪:

  • 扰动: 扰动图片亮度、对比度、饱和度和色相。
  • 扩张: 将原始图片放进一张使用像素均值填充(随后会在减均值操作中减掉)的扩张图中,再对此图进行裁剪、缩放和翻转。
  • 翻转: 水平翻转。
  • 裁剪: 根据缩放比例、长宽比例两个参数生成若干候选框,再依据这些候选框和标注框的面积交并比(IoU)挑选出符合要求的裁剪结果。

参考链接

 

注意

本项目代码需要使用GPU环境来运行:

基于SSD的目标检测模型-LMLPHP
 

并且检查相关参数设置, 例如use_gpu, fluid.CUDAPlace(0)等处是否设置正确.

 

引入 pascal-voc 数据集,解压,然后删除不必要的图片

In[2]
# 查看当前挂载的数据集目录
!cd /home/aistudio/data/data4379 && unzip -q pascalvoc.zip
 

处理预训练的模型,创建pretrained-model目录,解压模型后移动到该目录下

In[3]
!cp data/data5389/mobilenet_v1_imagenet.zip pretrained-model/
!cd pretrained-model && unzip -qo mobilenet_v1_imagenet.zip
!cd pretrained-model && mv mobilenet_v1_imagenet/* . && rm -r mobilenet_v1_imagenet && rm mobilenet_v1_imagenet.zip
 

定义训练ssd相关的配置

In[1]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import uuid
import numpy as np
import time
import six
import math
import paddle
import paddle.fluid as fluid
import logging
import xml.etree.ElementTree
import codecs

from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from PIL import Image, ImageEnhance, ImageDraw

logger = None
train_parameters = {
    "input_size": [3, 300, 300],
    "class_dim": -1,
    "label_dict": {},
    "image_count": -1,
    "log_feed_image": False,
    "pretrained": True,
    "pretrained_model_dir": "./pretrained-model",
    "continue_train": False,
    "save_model_dir": "./ssd-model",
    "model_prefix": "mobilenet-ssd",
    #"data_dir": "/home/work/xiangyubo/common_resource/pascalvoc/pascalvoc",
    "data_dir": "/home/aistudio/data/data4379/pascalvoc",
    "mean_rgb": [127.5, 127.5, 127.5],
    "file_list": "train.txt",
    "mode": "train",
    "multi_data_reader_count": 5,
    "num_epochs": 120,
    "train_batch_size": 64,
    "use_gpu": True,
    "apply_distort": True,
    "apply_expand": True,
    "apply_corp": True,
    "image_distort_strategy": {
        "expand_prob": 0.5,
        "expand_max_ratio": 4,
        "hue_prob": 0.5,
        "hue_delta": 18,
        "contrast_prob": 0.5,
        "contrast_delta": 0.5,
        "saturation_prob": 0.5,
        "saturation_delta": 0.5,
        "brightness_prob": 0.5,
        "brightness_delta": 0.125
    },
    "rsm_strategy": {
        "learning_rate": 0.001,
        "lr_epochs": [20, 40, 60, 80, 100],
        "lr_decay": [1, 0.5, 0.25, 0.1, 0.05, 0.01],
    },
    "momentum_strategy": {
        "learning_rate": 0.1,
        "decay_steps": 2 ** 7,
        "decay_rate": 0.8
    },
    "early_stop": {
        "sample_frequency": 50,
        "successive_limit": 3,
        "min_loss": 1.28,
        "min_curr_map": 0.86
    }
}
 

定义基于 mobile-net 的SSD网络结构

In[2]
class MobileNetSSD:
    def __init__(self):
        pass

    def conv_bn(self,
                input,
                filter_size,
                num_filters,
                stride,
                padding,
                num_groups=1,
                act='relu',
                use_cudnn=True):
        parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=parameter_attr,
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def depthwise_separable(self, input, num_filters1, num_filters2, num_groups, stride, scale):
        depthwise_conv = self.conv_bn(
            input=input,
            filter_size=3,
            num_filters=int(num_filters1 * scale),
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False)

        pointwise_conv = self.conv_bn(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0)
        return pointwise_conv

    def extra_block(self, input, num_filters1, num_filters2, num_groups, stride, scale):
        # 1x1 conv
        pointwise_conv = self.conv_bn(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1 * scale),
            stride=1,
            num_groups=int(num_groups * scale),
            padding=0)

        # 3x3 conv
        normal_conv = self.conv_bn(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2 * scale),
            stride=2,
            num_groups=int(num_groups * scale),
            padding=1)
        return normal_conv

    def net(self, num_classes, img, img_shape, scale=1.0):
        # 300x300
        tmp = self.conv_bn(img, 3, int(32 * scale), 2, 1)
        # 150x150
        tmp = self.depthwise_separable(tmp, 32, 64, 32, 1, scale)
        tmp = self.depthwise_separable(tmp, 64, 128, 64, 2, scale)
        # 75x75
        tmp = self.depthwise_separable(tmp, 128, 128, 128, 1, scale)
        tmp = self.depthwise_separable(tmp, 128, 256, 128, 2, scale)
        # 38x38
        tmp = self.depthwise_separable(tmp, 256, 256, 256, 1, scale)
        tmp = self.depthwise_separable(tmp, 256, 512, 256, 2, scale)

        # 19x19
        for i in range(5):
            tmp = self.depthwise_separable(tmp, 512, 512, 512, 1, scale)
        module11 = tmp
        tmp = self.depthwise_separable(tmp, 512, 1024, 512, 2, scale)

        # 10x10
        module13 = self.depthwise_separable(tmp, 1024, 1024, 1024, 1, scale)
        module14 = self.extra_block(module13, 256, 512, 1, 2, scale)
        # 5x5
        module15 = self.extra_block(module14, 128, 256, 1, 2, scale)
        # 3x3
        module16 = self.extra_block(module15, 128, 256, 1, 2, scale)
        # 2x2
        module17 = self.extra_block(module16, 64, 128, 1, 2, scale)

        mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head(
            inputs=[module11, module13, module14, module15, module16, module17],
            image=img,
            num_classes=num_classes,
            min_ratio=20,
            max_ratio=90,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]],
            base_size=img_shape[2],
            offset=0.5,
            flip=True)

        return mbox_locs, mbox_confs, box, box_var
 

定义训练时候,数据增强需要的辅助类,例如外接矩形框、采样器

In[3]
class sampler:
    def __init__(self, max_sample, max_trial, min_scale, max_scale,
                 min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap,
                 max_jaccard_overlap):
        self.max_sample = max_sample
        self.max_trial = max_trial
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.min_jaccard_overlap = min_jaccard_overlap
        self.max_jaccard_overlap = max_jaccard_overlap


class bbox:
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax
 

初始化参数、初始化日志记录相关的函数,训练最开始需要调用哟

In[4]
def init_train_parameters():
    file_list = os.path.join(train_parameters['data_dir'], "train.txt")
    label_list = os.path.join(train_parameters['data_dir'], "label_list")
    index = 0
    with codecs.open(label_list, encoding='utf-8') as flist:
        lines = [line.strip() for line in flist]
        for line in lines:
            train_parameters['label_dict'][line.strip()] = index
            index += 1
        train_parameters['class_dim'] = index
    with codecs.open(file_list, encoding='utf-8') as flist:
        lines = [line.strip() for line in flist]
        train_parameters['image_count'] = len(lines)


def init_log_config():
    global logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_path = os.path.join(os.getcwd(), 'logs')
    if not os.path.exists(log_path):
        os.makedirs(log_path)
    log_name = os.path.join(log_path, 'train.log')
    fh = logging.FileHandler(log_name, mode='w')
    fh.setLevel(logging.DEBUG)
    formatter = logging.Formatter("%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s")
    fh.setFormatter(formatter)
    logger.addHandler(fh)
 

为了更直观的看到训练样本的形态,增加打印图片,并画出bbox的函数

In[5]
def log_feed_image(img, sampled_labels):
    draw = ImageDraw.Draw(img)
    target_h = train_parameters['input_size'][1]
    target_w = train_parameters['input_size'][2]
    for label in sampled_labels:
        print(label)
        draw.rectangle((label[1] * target_w, label[2] * target_h, label[3] * target_w, label[4] * target_h), None,
                       'red')
    img.save(str(uuid.uuid1()) + '.jpg')
 

训练数据增强,主要是采样。利用随机截取训练图上的框来生成新的训练样本。同时要保证采样的样本能包含真实的目标。采样之后,为了保持训练数据格式的一致性,还需要对标注的坐标信息做变换

In[6]
def bbox_area(src_bbox):
    width = src_bbox.xmax - src_bbox.xmin
    height = src_bbox.ymax - src_bbox.ymin
    return width * height


def generate_sample(sampler):
    scale = np.random.uniform(sampler.min_scale, sampler.max_scale)
    aspect_ratio = np.random.uniform(sampler.min_aspect_ratio, sampler.max_aspect_ratio)
    aspect_ratio = max(aspect_ratio, (scale ** 2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale ** 2.0))

    bbox_width = scale * (aspect_ratio ** 0.5)
    bbox_height = scale / (aspect_ratio ** 0.5)
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = np.random.uniform(0, xmin_bound)
    ymin = np.random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
                    sample_bbox.xmax <= object_bbox.xmin or \
                    sample_bbox.ymin >= object_bbox.ymax or \
                    sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
    if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
        return True
    for i in range(len(bbox_labels)):
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4])
        overlap = jaccard_overlap(sample_bbox, object_bbox)
        if sampler.min_jaccard_overlap != 0 and overlap < sampler.min_jaccard_overlap:
            continue
        if sampler.max_jaccard_overlap != 0 and overlap > sampler.max_jaccard_overlap:
            continue
        return True
    return False


def generate_batch_samples(batch_sampler, bbox_labels):
    sampled_bbox = []
    index = []
    c = 0
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
            sample_bbox = generate_sample(sampler)
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
                index.append(c)
        c = c + 1
    return sampled_bbox


def clip_bbox(src_bbox):
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
                    center_x <= sample_bbox.xmax and \
                    center_y >= sample_bbox.ymin and \
                    center_y <= sample_bbox.ymax:
        return True
    return False


def transform_labels(bbox_labels, sample_bbox):
    proj_bbox = bbox(0, 0, 0, 0)
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
            sample_label.append(bbox_labels[i][5])
            sample_labels.append(sample_label)
    return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
    sample_img = img.crop((xmin, ymin, xmax, ymax))
    sample_labels = transform_labels(bbox_labels, sample_bbox)
    return sample_img, sample_labels
 

图像增强相关的函数:

  • 对比度
  • 饱和度
  • 色彩明暗
  • 保持长宽比例的缩放
In[7]
def resize_img(img, sampled_labels):
    target_size = train_parameters['input_size']
    ret = img.resize((target_size[1], target_size[2]), Image.ANTIALIAS)
    return ret


def random_brightness(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['brightness_prob']:
        brightness_delta = train_parameters['image_distort_strategy']['brightness_delta']
        delta = np.random.uniform(-brightness_delta, brightness_delta) + 1
        img = ImageEnhance.Brightness(img).enhance(delta)
    return img


def random_contrast(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['contrast_prob']:
        contrast_delta = train_parameters['image_distort_strategy']['contrast_delta']
        delta = np.random.uniform(-contrast_delta, contrast_delta) + 1
        img = ImageEnhance.Contrast(img).enhance(delta)
    return img


def random_saturation(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['saturation_prob']:
        saturation_delta = train_parameters['image_distort_strategy']['saturation_delta']
        delta = np.random.uniform(-saturation_delta, saturation_delta) + 1
        img = ImageEnhance.Color(img).enhance(delta)
    return img


def random_hue(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['hue_prob']:
        hue_delta = train_parameters['image_distort_strategy']['hue_delta']
        delta = np.random.uniform(-hue_delta, hue_delta)
        img_hsv = np.array(img.convert('HSV'))
        img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
        img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
    return img


def distort_image(img):
    prob = np.random.uniform(0, 1)
    # Apply different distort order
    if prob > 0.5:
        img = random_brightness(img)
        img = random_contrast(img)
        img = random_saturation(img)
        img = random_hue(img)
    else:
        img = random_brightness(img)
        img = random_saturation(img)
        img = random_hue(img)
        img = random_contrast(img)
    return img


def expand_image(img, bbox_labels, img_width, img_height):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['expand_prob']:
        expand_max_ratio = train_parameters['image_distort_strategy']['expand_max_ratio']
        if expand_max_ratio - 1 >= 0.01:
            expand_ratio = np.random.uniform(1, expand_max_ratio)
            height = int(img_height * expand_ratio)
            width = int(img_width * expand_ratio)
            h_off = math.floor(np.random.uniform(0, height - img_height))
            w_off = math.floor(np.random.uniform(0, width - img_width))
            expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
                               (width - w_off) / img_width,
                               (height - h_off) / img_height)
            expand_img = np.uint8(np.ones((height, width, 3)) * np.array([127.5, 127.5, 127.5]))
            expand_img = Image.fromarray(expand_img)
            expand_img.paste(img, (int(w_off), int(h_off)))
            bbox_labels = transform_labels(bbox_labels, expand_bbox)
            return expand_img, bbox_labels, width, height
    return img, bbox_labels, img_width, img_height


def preprocess(img, bbox_labels, mode):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if train_parameters['apply_distort']:
            img = distort_image(img)
        if train_parameters['apply_expand']:
            img, bbox_labels, img_width, img_height = expand_image(img, bbox_labels, img_width, img_height)

        if train_parameters['apply_corp']:
            batch_sampler = []
            # hard-code here
            batch_sampler.append(sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
            sampled_bbox = generate_batch_samples(batch_sampler, bbox_labels)
            if len(sampled_bbox) > 0:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                img, sampled_labels = crop_image(img, bbox_labels, sampled_bbox[idx], img_width, img_height)

        mirror = int(np.random.uniform(0, 2))
        if mirror == 1:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
            for i in six.moves.xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp

    img = resize_img(img, sampled_labels)
    if train_parameters['log_feed_image']:
        log_feed_image(img, sampled_labels)
    img = np.array(img).astype('float32')
    img -= train_parameters['mean_rgb']
    img = img.transpose((2, 0, 1))  # HWC to CHW
    img *= 0.007843
    return img, sampled_labels
 

自定义用户数据读取器。因为图像处理比较多,批处理时会很慢,可能导致数据处理时间比真实计算模型的时间还要长!为了尽量避免这种情况,训练时使用并行化的数据读取器。

同时,为了方便训练中能够验证当前的效果,中间验证的时候使用同步数据读取器

原本验证的数据不应该和训练数据混着用,此处仅仅为了示例,真实训练,建议将两批数据分开

In[8]
def custom_reader(file_list, data_dir, mode):
    def reader():
        np.random.shuffle(file_list)
        for line in file_list:
            if mode == 'train' or mode == 'eval':
                image_path, label_path = line.split()
                image_path = os.path.join(data_dir, image_path)
                label_path = os.path.join(data_dir, label_path)
                img = Image.open(image_path)
                if img.mode != 'RGB':
                    img = img.convert('RGB')
                im_width, im_height = img.size
                # layout: label | xmin | ymin | xmax | ymax | difficult
                bbox_labels = []
                root = xml.etree.ElementTree.parse(label_path).getroot()
                for object in root.findall('object'):
                    bbox_sample = []
                    # start from 1
                    bbox_sample.append(float(train_parameters['label_dict'][object.find('name').text]))
                    bbox = object.find('bndbox')
                    difficult = float(object.find('difficult').text)
                    bbox_sample.append(float(bbox.find('xmin').text) / im_width)
                    bbox_sample.append(float(bbox.find('ymin').text) / im_height)
                    bbox_sample.append(float(bbox.find('xmax').text) / im_width)
                    bbox_sample.append(float(bbox.find('ymax').text) / im_height)
                    bbox_sample.append(difficult)
                    bbox_labels.append(bbox_sample)
                img, sample_labels = preprocess(img, bbox_labels, mode)
                sample_labels = np.array(sample_labels)
                if len(sample_labels) == 0: continue
                boxes = sample_labels[:, 1:5]
                lbls = sample_labels[:, 0].astype('int32')
                difficults = sample_labels[:, -1].astype('int32')
                yield img, boxes, lbls, difficults
            elif mode == 'test':
                img_path = os.path.join(data_dir, line)
                yield Image.open(img_path)

    return reader


def multi_process_custom_reader(file_path, data_dir, num_workers, mode):
    file_path = os.path.join(data_dir, file_path)
    readers = []
    images = [line.strip() for line in open(file_path)]
    n = int(math.ceil(len(images) // num_workers))
    image_lists = [images[i: i + n] for i in range(0, len(images), n)]
    for l in image_lists:
        readers.append(paddle.batch(custom_reader(l, data_dir, mode),
                                          batch_size=train_parameters['train_batch_size'],
                                          drop_last=True))
    return paddle.reader.multiprocess_reader(readers, False)


def create_eval_reader(file_path, data_dir, mode):
    file_path = os.path.join(data_dir, file_path)
    images = [line.strip() for line in open(file_path)]
    return paddle.batch(custom_reader(images, data_dir, mode),
                                    batch_size=train_parameters['train_batch_size'],
                                    drop_last=True)
 

配合两种不同数据读取器,定义两种网络构建方法。注意两种定义的时候要共享参数,同时验证网络需要设置为 for_test

In[9]
def build_train_program_with_async_reader(main_prog, startup_prog):
    with fluid.program_guard(main_prog, startup_prog):
        img = fluid.layers.data(name='img', shape=train_parameters['input_size'], dtype='float32')
        gt_box = fluid.layers.data(name='gt_box', shape=[4], dtype='float32', lod_level=1)
        gt_label = fluid.layers.data(name='gt_label', shape=[1], dtype='int32', lod_level=1)
        difficult = fluid.layers.data(name='difficult', shape=[1], dtype='int32', lod_level=1)
        data_reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                            feed_list=[img, gt_box, gt_label, difficult],
                                                            name='train')
        multi_reader = multi_process_custom_reader(train_parameters['file_list'],
                                                   train_parameters['data_dir'],
                                                   train_parameters['multi_data_reader_count'],
                                                   'train')
        data_reader.decorate_paddle_reader(multi_reader)
        with fluid.unique_name.guard():
            img, gt_box, gt_label, difficult = fluid.layers.read_file(data_reader)
            model = MobileNetSSD()
            locs, confs, box, box_var = model.net(train_parameters['class_dim'], img, train_parameters['input_size'])
            with fluid.unique_name.guard('train'):
                loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label, box, box_var)
                loss = fluid.layers.reduce_sum(loss)
                optimizer = optimizer_rms_setting()
                optimizer.minimize(loss)
                return data_reader, img, loss, locs, confs, box, box_var


def build_eval_program_with_feeder(main_prog, startup_prog):
    with fluid.program_guard(main_prog, startup_prog):
        img = fluid.layers.data(name='img', shape=train_parameters['input_size'], dtype='float32')
        gt_box = fluid.layers.data(name='gt_box', shape=[4], dtype='float32', lod_level=1)
        gt_label = fluid.layers.data(name='gt_label', shape=[1], dtype='int32', lod_level=1)
        difficult = fluid.layers.data(name='difficult', shape=[1], dtype='int32', lod_level=1)
        feeder = fluid.DataFeeder(feed_list=[img, gt_box, gt_label, difficult], place=place, program=main_prog)
        reader = create_eval_reader(train_parameters['file_list'], train_parameters['data_dir'], 'eval')
        with fluid.unique_name.guard():
            model = MobileNetSSD()
            locs, confs, box, box_var = model.net(train_parameters['class_dim'], img, train_parameters['input_size'])
            with fluid.unique_name.guard('eval'):
                nmsed_out = fluid.layers.detection_output(locs, confs, box, box_var, nms_threshold=0.45)
                map_eval = fluid.metrics.DetectionMAP(nmsed_out, gt_label, gt_box, difficult,
                                                      train_parameters['class_dim'], overlap_threshold=0.5,
                                                      evaluate_difficult=False, ap_version='11point')
                cur_map, accum_map = map_eval.get_map_var()
                return feeder, reader, cur_map, accum_map, nmsed_out
 

定义优化器。对于训练这种比较大的网络结构,尽量使用阶段性调整学习率的方式

In[10]
def optimizer_momentum_setting():
    learning_strategy = train_parameters['momentum_strategy']
    learning_rate = fluid.layers.exponential_decay(learning_rate=learning_strategy['learning_rate'],
                                                   decay_steps=learning_strategy['decay_steps'],
                                                   decay_rate=learning_strategy['decay_rate'])
    optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=learning_rate, momentum=0.1)
    return optimizer


def optimizer_rms_setting():
    batch_size = train_parameters["train_batch_size"]
    iters = train_parameters["image_count"] // batch_size
    learning_strategy = train_parameters['rsm_strategy']
    lr = learning_strategy['learning_rate']

    boundaries = [i * iters for i in learning_strategy["lr_epochs"]]
    values = [i * lr for i in learning_strategy["lr_decay"]]

    optimizer = fluid.optimizer.RMSProp(
        learning_rate=fluid.layers.piecewise_decay(boundaries, values),
        regularization=fluid.regularizer.L2Decay(0.00005))

    return optimizer
 

保存和加载模型。保存时候注意先保存读写参数,可重训练的方式;后保存固化参数,可用于重训练的方式。

加载模型有两种,一种是用之前训练的参数,接着全网络继续训练;一种是加载预训练的 mobile-net

In[11]
def save_model(base_dir, base_name, feed_var_list, target_var_list, train_program, infer_program, exe):
    fluid.io.save_persistables(dirname=base_dir,
                               filename=base_name + '-retrain',
                               main_program=train_program,
                               executor=exe)
    fluid.io.save_inference_model(dirname=base_dir,
                                  params_filename=base_name + '-params',
                                  model_filename=base_name + '-model',
                                  feeded_var_names=feed_var_list,
                                  target_vars=target_var_list,
                                  main_program=infer_program,
                                  executor=exe)


def load_pretrained_params(exe, program):
    retrain_param_file = os.path.join(train_parameters['save_model_dir'],
                                      train_parameters['model_prefix'] + '-retrain')
    if os.path.exists(retrain_param_file) and train_parameters['continue_train']:
        logger.info('load param from retrain model')
        print('load param from retrain model')
        fluid.io.load_persistables(executor=exe,
                                   dirname=train_parameters['save_model_dir'],
                                   main_program=program,
                                   filename=train_parameters['model_prefix'] + '-retrain')
    elif train_parameters['pretrained'] and os.path.exists(train_parameters['pretrained_model_dir']):
        logger.info('load param from pretrained model')
        print('load param from pretrained model')

        def if_exist(var):
            return os.path.exists(os.path.join(train_parameters['pretrained_model_dir'], var.name))
        fluid.io.load_vars(exe, train_parameters['pretrained_model_dir'], main_program=program,
                           predicate=if_exist)
 

训练主体,配合了一些提前停止策略。开始愉快的炼丹吧~

In[12]

init_log_config()
init_train_parameters()
print("start ssd, train params:", str(train_parameters))
logger.info("start ssd, train params: %s", str(train_parameters))

logger.info("create place, use gpu:" + str(train_parameters['use_gpu']))
place = fluid.CUDAPlace(0) if train_parameters['use_gpu'] else fluid.CPUPlace()

logger.info("build network and program")
train_program = fluid.Program()
start_program = fluid.Program()
eval_program = fluid.Program()
start_program = fluid.Program()
train_reader, img, loss, locs, confs, box, box_var = build_train_program_with_async_reader(train_program, start_program)
eval_feeder, eval_reader, cur_map, accum_map, nmsed_out = build_eval_program_with_feeder(eval_program, start_program)
eval_program = eval_program.clone(for_test=True)    # 注意设置 test,不然 batch_normal 之类的参数会不固化

logger.info("build executor and init params")
exe = fluid.Executor(place)
exe.run(start_program)
train_fetch_list = [loss.name]
eval_fetch_list = [cur_map.name, accum_map.name]
load_pretrained_params(exe, train_program)

stop_strategy = train_parameters['early_stop']
successive_limit = stop_strategy['successive_limit']
sample_freq = stop_strategy['sample_frequency']
min_curr_map = stop_strategy['min_curr_map']
min_loss = stop_strategy['min_loss']
stop_train = False
total_batch_count = 0
successive_count = 0
for pass_id in range(train_parameters["num_epochs"]):
    logger.info("current pass: %d, start read image", pass_id)
    batch_id = 0
    train_reader.start()
    try:
        while True:
            t1 = time.time()
            loss = exe.run(train_program, fetch_list=train_fetch_list)
            period = time.time() - t1
            loss = np.mean(np.array(loss))
            batch_id += 1
            total_batch_count += 1

            if batch_id % 10 == 0:
                logger.info(
                    "Pass {0}, trainbatch {1}, loss {2} time {3}".format(pass_id, batch_id, loss, "%2.2f sec" % period))
                print(
                    "Pass {0}, trainbatch {1}, loss {2} time {3}".format(pass_id, batch_id, loss, "%2.2f sec" % period))

            if total_batch_count % 400 == 0:
                logger.info("temp save {0} batch train result".format(total_batch_count))
                print("temp save {0} batch train result".format(total_batch_count))
                fluid.io.save_persistables(dirname=train_parameters['save_model_dir'],
                                           filename=train_parameters['model_prefix'] + '-retrain',
                                           main_program=train_program,
                                           executor=exe)

            if total_batch_count == 1 or total_batch_count % sample_freq == 0:
                for data in eval_reader():
                    cur_map_v, accum_map_v = exe.run(eval_program, feed=eval_feeder.feed(data), fetch_list=eval_fetch_list)
                    break
                logger.info("{0} batch train, cur_map:{1} accum_map_v:{2} loss:{3}".format(total_batch_count, cur_map_v[0],
                                                                                  accum_map_v[0], loss))
                print("{0} batch train, cur_map:{1} accum_map_v:{2} loss:{3}".format(total_batch_count, cur_map_v[0],
                                                                            accum_map_v[0], loss))
                if cur_map_v[0] > min_curr_map or loss <= min_loss:
                    successive_count += 1
                    print("successive_count: ", successive_count)
                    fluid.io.save_inference_model(dirname=train_parameters['save_model_dir'],
                                                  params_filename=train_parameters['model_prefix'] + '-params',
                                                  model_filename=train_parameters['model_prefix'] + '-model',
                                                  feeded_var_names=['img'],
                                                  target_vars=[nmsed_out],
                                                  main_program=eval_program,
                                                  executor=exe)
                    if successive_count >= successive_limit:
                        logger.info("early stop, end training")
                        print("early stop, end training")
                        stop_train = True
                        break
                else:
                    successive_count = 0
        if stop_train:
            break
    except fluid.core.EOFException:
        train_reader.reset()

logger.info("training till last epcho, end training")
print("training till last epcho, end training")
save_model(train_parameters['save_model_dir'], train_parameters['model_prefix'] + '-final',
           ['img'], [nmsed_out], train_program, eval_program, exe)
 

推理部分代码示例,用来检测一张图片上的猫猫和狗狗

In[13]
# -*- coding: UTF-8 -*-
"""
使用训练完成的模型进行预测
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import sys
import time
import paddle.fluid as fluid

from PIL import Image

from PIL import ImageDraw

target_size = [3, 224, 224]
nms_threshold = 0.45
confs_threshold = 0.5
place = fluid.CPUPlace()
exe = fluid.Executor(place)
path = "./ssd-model"
[inference_program, feed_target_names, fetch_targets] = \
    fluid.io.load_inference_model(dirname=path,
                                  params_filename='mobilenet-ssd-params',
                                  model_filename='mobilenet-ssd-model',
                                  executor=exe)
print(fetch_targets)


def draw_bbox_image(img, nms_out, save_name):
    """
    给图片画上外接矩形框
    :param img:
    :param nms_out:
    :param save_name:
    :return:
    """
    img_width, img_height = img.size
    draw = ImageDraw.Draw(img)
    for dt in nms_out:
        if dt[1] < confs_threshold:
            continue
        category_id = dt[0]
        bbox = dt[2:]
        xmin, ymin, xmax, ymax = clip_bbox(dt[2:])
        draw.rectangle((xmin * img_width, ymin * img_height, xmax * img_width, ymax * img_height), None, 'red')
    img.save(save_name)


def clip_bbox(bbox):
    """
    截断矩形框
    :param bbox:
    :return:
    """
    xmin = max(min(bbox[0], 1.), 0.)
    ymin = max(min(bbox[1], 1.), 0.)
    xmax = max(min(bbox[2], 1.), 0.)
    ymax = max(min(bbox[3], 1.), 0.)
    return xmin, ymin, xmax, ymax


def resize_img(img, target_size):
    """
    保持比例的缩放图片
    :param img:
    :param target_size:
    :return:
    """
    percent_h = float(target_size[1]) / img.size[1]
    percent_w = float(target_size[2]) / img.size[0]
    percent = min(percent_h, percent_w)
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    w_off = (target_size[1] - resized_width) / 2
    h_off = (target_size[2] - resized_height) / 2
    img = img.resize((target_size[1], target_size[2]), Image.ANTIALIAS)
    return img


def read_image(img_path):
    """
    读取图片
    :param img_path:
    :return:
    """
    img = Image.open(img_path)
    resized_img = img.copy()
    img = resize_img(img, target_size)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1))  # HWC to CHW
    img -= 127.5
    img *= 0.007843
    img = img[np.newaxis, :]
    return img, resized_img


def infer(image_path):
    """
    预测,将结果保存到一副新的图片中
    :param image_path:
    :return:
    """
    tensor_img, resized_img = read_image(image_path)
    t1 = time.time()
    nmsed_out = exe.run(inference_program,
                        feed={feed_target_names[0]: tensor_img},
                        fetch_list=fetch_targets,
                        return_numpy=False)
    period = time.time() - t1
    print("predict result:{0} cost time:{1}".format(nmsed_out, "%2.2f sec" % period))
    nmsed_out = np.array(nmsed_out[0])
    last_dot_index = image_path.rfind('.')
    out_path = image_path[:last_dot_index]
    out_path += '-reslut.jpg'
    print("result save to:", out_path)
    draw_bbox_image(resized_img, nmsed_out, out_path)


image_path = 'dog-cat.jpg'
infer(image_path)
[name: "save_infer_model/scale_0"
type {
  type: LOD_TENSOR
  lod_tensor {
    tensor {
      data_type: FP32
      dims: 1917
      dims: 6
    }
    lod_level: 0
  }
}
persistable: false
]
predict result:[<paddle.fluid.core.LoDTensor object at 0x7f52d02a6458>] cost time:0.08 sec
result save to: dog-cat-reslut.jpg

使用AI Studio一键上手实践项目吧:https://aistudio.baidu.com/aistudio/projectdetail/122276 

下载安装命令

## CPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle

## GPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu

>> 访问 PaddlePaddle 官网,了解更多相关内容 

09-04 23:10