问题描述
试题编号: | 201609-4 |
试题名称: | 交通规划 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: | 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统。 建设高速铁路投入非常大,为了节约建设成本,G国国王决定不新建铁路,而是将已有的铁路改造成高速铁路。现在,请你为G国国王提供一个方案,将现有的一部分铁路改造成高速铁路,使得任何两个城市间都可以通过高速铁路到达,而且从所有城市乘坐高速铁路到首都的最短路程和原来一样长。请你告诉G国国王在这些条件下最少要改造多长的铁路。 输入格式 输入的第一行包含两个整数n, m,分别表示G国城市的数量和城市间铁路的数量。所有的城市由1到n编号,首都为1号。 接下来m行,每行三个整数a, b, c,表示城市a和城市b之间有一条长度为c的双向铁路。这条铁路不会经过a和b以外的城市。 输出格式 输出一行,表示在满足条件的情况下最少要改造的铁路长度。 样例输入 4 5 1 2 4 1 3 5 2 3 2 2 4 3 3 4 2 样例输出 11 评测用例规模与约定 对于20%的评测用例,1 ≤ n ≤ 10,1 ≤ m ≤ 50; 对于50%的评测用例,1 ≤ n ≤ 100,1 ≤ m ≤ 5000; 对于80%的评测用例,1 ≤ n ≤ 1000,1 ≤ m ≤ 50000; 对于100%的评测用例,1 ≤ n ≤ 10000,1 ≤ m ≤ 100000,1 ≤ a, b ≤ n,1 ≤ c ≤ 1000。输入保证每个城市都可以通过铁路达到首都。 |
求解思路:
要使“从所有城市乘坐高速铁路到首都的最短路程和原来一样长”,容易想到从首都结点开始做单源最短路,修建的高速铁路一定在这些最短路上。
如果把每个结点到首都的最短路径上的边都修建成高速铁路,则显然任何两个城市间都可以以首都作为中继结点,通过高速铁路互相到达。
如果同时存在多条最短路径,应该选择扩展时用到的边距离最小的那一条。
很显然,如果利用dijkstra算法从1结点开始往外扩展,每扩展一个结点刚好就要多修一条高速铁路,因此在做求解最短路时,可以记录下每个结点扩展时所需要多修建的这条高速铁路的长度,在扩展时遇到有多种可能的最短路情况时,记录下边权最小的一个。
代码如下:
#include<bits/stdc++.h>
using namespace std; const int MAX=;
const int INF=1e9;
int n,m; struct HeapNode
{
int d,u;
bool operator<(const HeapNode& r)const
{
return d>r.d;
}
}; struct Edge
{
int to,dis;
}; vector<Edge>G[MAX];
int d[MAX];
bool vis[MAX]; int cost [MAX];
void dijkstra(int s)
{
priority_queue<HeapNode>Q;
for(int i=;i<=n;i++)
d[i]=cost[s]=INF;
d[s]=cost[s]=;
memset(vis,,sizeof vis); Q.push({,s}); while(!Q.empty())
{
HeapNode x=Q.top();
Q.pop(); int u=x.u; if(vis[u])
continue;
vis[u]=true; for(int i=;i<G[u].size();i++)
{
Edge& e=G[u][i];
if(d[e.to]>d[u]+e.dis)
{
d[e.to]=d[u]+e.dis;
Q.push({d[e.to],e.to});
cost[e.to]=e.dis;
}
//记录下边权最小的一个
if(d[e.to]==d[u]+e.dis&&cost[e.to]>e.dis)
cost[e.to]=e.dis;
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
G[a].push_back({b,c});
G[b].push_back({a,c});
} dijkstra();
int ans=;
for(int i=;i<=n;i++)
ans+=cost[i]; printf("%d\n",ans); return ;
}