原题传送门:P2604 [ZJOI2010]网络扩容

这题可以说是板题

给你一个图,先让你求最大流

再告诉你,每条边可以花费一些代价,使得流量加一

问至少花费多少代价才能使最大流达到k

解法十分简单

先跑一个dinic求最大流(我懒着写ISAP或前弧优化)

再重新建图

跑一个mcmf求最小费用最大流

答案就出来了

细节见代码

#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#define maxn 10005
#define maxm 50005
#define inf 0x7f7f7f7f
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
int n,m,k,tot,next[maxm<<1],beg[maxm<<1],head[maxn],flow[maxm<<1],fflow[maxm<<1],last[maxn],pre[maxn],fl[maxn],nxt[maxm<<1],to[maxm<<1],ccost[maxm<<1],cost[maxm<<1],d[maxn],dep[maxn];
bool vis[maxn];
inline void add(register int x,register int y,register int z,register int co,register int type)
{
nxt[++tot]=head[x];
head[x]=tot;
to[tot]=y;
beg[tot]=x;
flow[tot]=z;
fflow[tot]=type?z:0;
cost[tot]=type?co:0;
ccost[tot]=co;
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int> q;
q.push(1);
dep[1]=1;
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=head[x];i;i=nxt[i])
{
int u=flow[i],v=to[i];
if(u>0&&!dep[v])
{
dep[v]=dep[x]+1;
q.push(v);
}
}
}
return dep[n];
}
inline int dfs(register int x,register int mini)
{
if(x==n)
return mini;
for(register int i=head[x];i;i=nxt[i])
{
int u=flow[i],v=to[i];
if(u>0&&dep[v]==dep[x]+1)
{
int dd=dfs(v,Min(mini,u));
if(dd>0)
{
flow[i]-=dd;
flow[i^1]+=dd;
return dd;
}
}
}
return 0;
}
inline int dinic()
{
int ret=0;
while(bfs())
{
int tmp=dfs(1,inf);
while(tmp)
{
ret+=tmp;
tmp=dfs(1,inf);
}
}
return ret;
}
inline bool spfa()
{
memset(d,0x7f,sizeof(d));
memset(fl,0x7f,sizeof(fl));
memset(vis,0,sizeof(vis));
queue<int> q;
q.push(n+1);
vis[n+1]=1;
d[n+1]=0;
pre[n]=-1;
while(!q.empty())
{
int now=q.front();
q.pop();
for(register int i=head[now];i;i=nxt[i])
{
int v=to[i];
if(fflow[i]>0&&d[v]>d[now]+cost[i])
{
d[v]=d[now]+cost[i];
pre[v]=now;
last[v]=i;
fl[v]=Min(fl[now],fflow[i]);
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
vis[now]=0;
}
return pre[n]!=-1;
}
inline int mcmf()
{
int ret=0;
while(spfa())
{
int now=n;
ret+=fl[n]*d[n];
while(now!=n+1)
{
fflow[last[now]]-=fl[n];
fflow[last[now]^1]+=fl[n];
now=pre[now];
}
}
return ret;
}
inline void rebuild()
{
int cnt=tot;
for(register int i=2;i<=cnt;i+=2)
{
fflow[i]=flow[i];
fflow[i+1]=flow[i+1];
add(beg[i],to[i],inf,ccost[i],1);
add(to[i],beg[i],0,-ccost[i],1);
}
}
int main()
{
n=read(),m=read(),k=read();
add(n+1,1,k,0,1);
for(register int i=1;i<=m;++i)
{
int a=read(),b=read(),c=read(),d=read();
add(a,b,c,d,0),add(b,a,0,-d,0);
}
int ans1=dinic();
rebuild();
int ans2=mcmf();
printf("%d %d",ans1,ans2);
return 0;
}
05-08 15:28