假设你面前有一栋n层的大楼和m个鸡蛋,假设将鸡蛋从f层或更高的地方放扔下去,鸡蛋才会碎,否则就不会。你需要设计一种策略来确定f的值,求最坏情况下扔鸡蛋次数的最小值。

leetcode原题链接

乍一看这道题很抽象,可能有的人一看到这个题目从来没做过,就懵逼了。其实不用慌张,再花里胡哨的题目,最后都可以抽象成我们熟悉的数据结构和算法去解决。

不限鸡蛋

首先,我们从一个简单的版本开始理解,假如不限制鸡蛋个数,即把题目改成n层大楼和无限个鸡蛋。那么这题要怎么解呢?
第一步就是要充分理解题意,排除题目中的干扰,建立模型:

  • 在一栋n层的大楼中寻找目标楼层f --> 其实就是在一个1~n的数组中查找一个目标数字。
  • 鸡蛋碎了就代表楼层过高,否则就代表楼层过低 --> 每次尝试都能知道当前数字是大了还是小了。

很显然,这就是一个二分查找能解决的问题。
扔鸡蛋的次数就是二分查找的比较次数,即log2(n+1)。

限制鸡蛋个数

那我们现在再来看限制鸡蛋个数情况下,肯定没法用二分查找,但是由于求解的是一个最优值,我们自然而然地想到了动态规划。

四步走

动态规划的题目,这边提供一个思路,就是四步走

  1. 问题建模,优化的目标函数是什么?约束条件是什么?
  2. 划分子问题(状态)
  3. 列出状态转移方程及初值
  4. 是否满足最优子结构性质

建模

这一步非常非常重要,它建立在良好地理解题意的基础上。其实很多动态规划的题目都有这样的特点:

  1. 目标是求一个最优值
  2. 每一步决策有代价,总代价有一个约束值。

而这道题:

  1. 目标函数f(n):代表在1~n的楼层中找到f层的尝试次数,我们的目标就是求出f(n)的最优值。
  2. 每一步决策的代价:鸡蛋可能会碎;总代价的约束值:鸡蛋总个数。

划分子问题

我们知道动态规划就是多阶段决策的过程,最后求解组合最优值。
我们先举一个简单例子,来理解划分子问题的思路,看下面这张图:
面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP
问题:求起点集 S1~S5到终点集 T1~T5的最短路径。

分析这道题:定义子问题dis[i]代表节点i到终点的最短距离,没有约束条件。
然后问题划分为4个阶段:

  1. 阶段1求出离终点最近的C1~C4节点到终点的最短路径dis[C1]~dis[C4]
  2. 阶段2求出离终点最近的B2~B5节点到终点的最短路径dis[B1]~dis[B5],需要建立在阶段1的结果上计算。例如B2节点到终点有两条路,B2~C1,B2~C2,dis[C1]=2,B2到C1的长度=3;而dis[C2]=3,B2到C2的长度=6,因此dis[B2]=3+dis[B1]=5
  3. 阶段3和阶段4也是以此类推,最终就求出得到dis[S1]~dis[S5],得出最小路径为图中红色的两条。

在这道题中,dis[i]就是划分出来的子问题,每一步决策都是一个子问题,而且每一个子问题都依赖于以前子问题的计算结果。

因此,在动态规划中,定义一个合理的子问题非常重要

而扔鸡蛋这道题比上面这道题多了个约束条件,我们把子问题定义为:用i个鸡蛋,在j层楼上扔,在最坏情况下确定目标楼层E的最少次数,记为状态f[i,j]

列出状态转移方程和初值

面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP

假如决策是在第k层扔下鸡蛋,有两种结果:

  1. 鸡蛋碎了,此时e<k,我们只能用i-1个蛋在下面的j-1层继续寻找e。并且要求最坏情况下的次数最少,这是一个子问题,答案为f[i-1,j-1],总次数便是f[i-1,j-1]+1
  2. 鸡蛋没碎,此时e>=k,我们继续用这i个蛋在上面的j-k层寻找E。注意:在k~j层寻找和在1~(j-k)层寻找没有区别,因为步骤都是一样的,只不过这(j-k)层在上面罢了,所以就把它看成是对1~(j-k)层的操作。因此答案为f[i,j-k],次数为f[i,j-k]+1

初值:
当层数为0时,f[i,0]=0,当鸡蛋个数为1时,只能从下往上一层层扔,f[1,j]=j

因为是要最坏情况,所以这两种情况要取大值:max{f[i-1,j-1],f[i,j-k]},又要在所有决策中取最小值,所以动态转移方程是:

f(i,j)=min{max{f(i-1,k-1),f(i,j-k)}+1|1<=k<=j}

是否满足最优子结构

得到了状态转移方程后,还需要判断我们的思路是不是正确。能用动态规划解决的问题必须要满足一个特性,叫做最优子结构特性

这句话是什么意思呢?举个例子:f[4,5]表示4个鸡蛋、5层楼时的最优解,那它的子问题f[3,4],得到的解在3个鸡蛋、4层楼时也是最优解,它所有的子问题都满足这个特性。那这就满足了最优子结构特性。

一个反例

求 路径长度模10 结果最小的路径
面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP

还是像上面那道题一样,分成四个阶段。
按照动态规划的解法,阶段一CT,上面的路2 % 10 = 2,下面的路5 % 10 = 5,选择上面那条,阶段二BC也选择上面那条,以此类推,最后得出的结果路径是蓝色的这条。

但实际上,真正最优的是红色的这条路径20 % 10 = 0。这就是因为不符合最优子结构,对于红色路径的子结构CT阶段,最优解并不是下面这条边。

时间复杂度

递归树

假设m=3,n=4,我们来看一下f[3,4]的递归树。
面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP

图中颜色相同的就是一样的状态,可以看出,重复的递归计算很多,因此我们开设一个数组result[i,j]用于存放f[i,j]的计算结构,避免重复计算,用空间换时间。

代码

class Solution {
    private int[][] result;

    public int superEggDrop(int K, int N) {
        result = new int[K + 1][N + 1];

        for (int i = 1; i < K + 1; i++) {
            for (int j = 1; j < N + 1; j++) {
                result[i][j] = -1;
            }
        }

        return dp(K, N);
    }


    /**
     * @param i 剩余鸡蛋个数
     * @param j 楼层高度
     * @return
     */
   private int dp(int i, int j) {
        if (result[i][j] != -1) {
            return result[i][j];
        }
        if (i == 1) {
            return j;
        }
        if (j <= 1) {
            return j;
        }

        int min = Integer.MAX_VALUE;
        for (int k = 1; k <= j; k++) {
            int left = dp(i - 1, k - 1);
            result[i - 1][k - 1] = left;

            int right = dp(i, j - k);
            result[i][j - k] = right;

            int res = Math.max(left, right) + 1;
            if (res < min) {
                min = res;
            }
        }
        return min;
    }

   private static int log(int x) {
        double r = (Math.log(x) / Math.log(2));
        if ((r == Math.floor(r)) && !Double.isInfinite(r)) {
            return (int) r;
        } else {
            return (int) r + 1;
        }
    }
}

时间复杂度

动态规划求时间复杂度的方法是:

时间复杂度 = 状态总数 * 状态转移方程的时间复杂度

在这道题中,状态总个数很明显是m*n,而每个状态f[i,j]的时间复杂度为O(j),1<=j<=n,总时间复杂度为O(mn^2)。

优化

O(mn^2)的时间复杂度还是太高了。能不能想办法优化一下?

优化1

决策树

首先我们知道,在一个1~n的数组中,查找目标数字,最少需要比较log2n次,也就是二分查找。这个理论可以通过决策树来证明:
我们使用二叉树来表示所有的决策,内部节点表示一次扔鸡蛋的决策,左子树表示碎了,右子树表示没碎,叶子节点代表E的所有结果。每一条从根节点到叶子节点的路径对应算法求出E之前的所有决策

内部节点(i,j),i表示鸡蛋个数,j表示在j层楼扔下。
面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP

当楼层高度n=5时,E总共有6种情况(n=0代表没找到),所以叶子节点的个数是n+1个。
而我们关心的是树的高度,即决策的次数。根据二叉树理论:当树有n个叶子节点,数的高度至少为log2n,即比较次数在最坏情况下至少需要log2n次,也就是当这颗树尽量平衡的时候。

换句话说,在给定楼层n的情况下,决策次数的下限是log2(n+1),这个下限可以通过二分查找达到,只要鸡蛋的数量足够(就是我们刚才讨论的不限鸡蛋的情况)。

因此,一旦状态f[i,j]的鸡蛋个数i>log2(j+1),就不用计算了,直接输出二分查找的比较次数log2(j+1)即可。

这样我们的状态总数就降为n*log2(k+1),时间复杂度降为O(n^2 log2n)。

代码

/**
 * @param i 剩余鸡蛋个数
 * @param j 楼层高度
 * @return
 */
private int dp(int i, int j) {
    if (result[i][j] != -1) {
        return result[i][j];
    }
    if (i == 1) {
        return j;
    }
    if (j <= 1) {
        return j;
    }

    //此处剪枝优化
    int lowest = log(j + 1);
    if (i > lowest) {
        return lowest;
    }

    int min = Integer.MAX_VALUE;
    for (int k = 1; k <= j; k++) {
        int left = dp(i - 1, k - 1);
        result[i - 1][k - 1] = left;

        int right = dp(i, j - k);
        result[i][j - k] = right;

        int res = Math.max(left, right) + 1;
        if (res < min) {
            min = res;
        }
    }
    return min;
}

优化2

优化还未结束,我们尝试从动态转移方程的函数性质入手,观察函数f(i,j),如下图:
面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP
我们可以发现一个规律,f(i,j)是根据j递增的单调函数,即f(i,j)>=f(i,j-1),这个性质是可以用数学归纳法证明的,在这里不做证明,有兴趣的查看文末参考文献。

再来看动态转移方程:

f(i,j)=min{max{f(i-1,k-1),f(i,j-k)}+1|1<=k<=j}

由于f(i,j)具有单调性,因此f(i-1,k-1)是根据k递增的函数,f(i,j-k)是根据k递减的函数。

分别画出这两个函数的图像:
面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP

图像1:f(i-1,k-1)
图像2:f(i,j-k)
图像3:max{f(i-1,k-1),f(i,j-k)}+1,当k=kbest时,f达到最小值,我们的目标就是找到kbest的值

对于这个函数,可以使用二分查找来找到kbest:
如果f(i-1,k-1)<f(i,j-k),则k<kbest,即k在图中kbest的左边;
如果f(i-1,k-1)>f(i,j-k),则k>kbest,即k在图中kbest的右边。

代码

class EggDrop {
    private int[][] result;

    public int superEggDrop(int K, int N) {
        result = new int[K + 1][N + 1];

        for (int i = 1; i < K + 1; i++) {
            for (int j = 1; j < N + 1; j++) {
                result[i][j] = -1;
            }
        }

        return dp(K, N);
    }


    /**
     * @param i 剩余鸡蛋个数
     * @param j 楼层高度
     * @return
     */
   private int dp(int i, int j) {
        if (result[i][j] != -1) {
            return result[i][j];
        }
        if (i == 1) {
            return j;
        }
        if (j <= 1) {
            return j;
        }
        int lowest = log(j + 1);
        if (i >= lowest) {
            result[i][j] = lowest;
            return lowest;
        }

        int left = 1, right = j;
        while (left <= right) {
            int k = (left + right) / 2;
            int broken = dp(i - 1, k - 1);
            result[i - 1][k - 1] = broken;
            int notBroken = dp(i, j - k);
            result[i][j - k] = notBroken;

            if (broken < notBroken) {
                left = k + 1;
            } else if (broken > notBroken) {
                right = k - 1;
            } else {
                return notBroken + 1;
            }
        }
        //没找到,最小值就在left或者right中
        return Math.min(Math.max(dp(i - 1, left - 1), dp(i, j - left)),
            Math.max(dp(i - 1, right - 1), dp(i, j - right))) + 1;
    }

   private static int log(int x) {
        double r = (Math.log(x) / Math.log(2));
        if ((r == Math.floor(r)) && !Double.isInfinite(r)) {
            return (int) r;
        } else {
            return (int) r + 1;
        }
    }
}

时间复杂度

现在状态转移方程的时间复杂度降为了O(log2N),算法的时间复杂度降为O(Nlog2^2 N)。

优化3

现在无论是状态总数还是状态转移方程都很难优化了,但还有一种算法有更低的时间复杂度。
我们定义一个新的状态g(i,j),它表示用j个蛋尝试i次在最坏情况下能确定E的最高楼层数

动态转移方程

假设在k层扔下一只鸡蛋:

如果碎了,则在后面的(i-1)次里,我们要用(j-1)个蛋在下面的楼层中确定E。为了使 g(i,j)达到最大,我们当然希望下面的楼层数达到最多,这是一个子问题,答案为 g(i-1,j-1)。

如果没碎,则在后面(i-1)次里,我们要用j个蛋在上面的楼层中确定E,这同样需要楼层数达到最多,便为g(i-1,j) 。

因此动态转移方程为:

g(i,j)=g(i-1,j-1)+g(i-1,j)+1

边界值

当i=1时,表示只尝试一次,那最多只能确定一层楼,即g(1,j)=1 (j>=1)

当j=1是,表示只有一个蛋,那只能第一层一层层往上扔,最坏情况下一直扔到顶层,即g(i,1)=i (i>=1)

然后我们的目标就是找到一个尝试次数x,使x满足g(x-1,m)<ng(x,m)>=n

代码

public class EggDrop {

    private int dp(int iTime, int j) {
        if (iTime == 1) {
            return 1;
        }
        if (j == 1) {
            return iTime;
        }
        return dp(iTime - 1, j - 1) + dp(iTime - 1, j) + 1;
    }

    public int superEggDrop(int i, int j) {
        int ans = 1;
        while (dp(ans, i) < j) {
            ans++;
        }
        return ans;
    }
}

这个算法的时间复杂度是O(根号N),证明比较复杂,这里就不展开了,可以参考文末文献。

小结

最后我们总结一下动态规划算法的解题方法:

  • 四步走:问题建模、定义子问题、动态转移方程、最优子结构。
  • 时间复杂度 = 状态总数 * 状态转移方程的时间复杂度。
  • 考虑是否需要设置标记,例如有的题目还要求打印出最小路径。
  • 写代码,递归和循环选择你熟悉的来写。
  • 如果时间复杂度不能接受,考虑能不能优化算法。

优化思路

  • 是否能够剪枝优化(优化1)
  • 从函数本身的数学性质入手(优化2)
  • 转换思路,尝试一下别的状态转移方程(优化3)
  • ……

动态规划在算法中属于较难的题型,难点就在定义子问题和写出动态转移方程。所以需要勤加练习,训练自己的思维。
这里给出几道动态规划的经典题目,这几道题都需要吃透,可以用本文中提到的四步走的方式来思考和解题。

Maximum Length of Repeated Subarray
Coin Change
Partition Equal Subset Sum

最后:

面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?-LMLPHP

参考文献

国家集训队朱晨光论文
知乎-如何用最少的次数测出鸡蛋会在哪一层摔碎?

10-11 11:16