大数据时代,基于单机的建模很难满足企业不断增长的数据量级的需求,开发者需要使用分布式的开发方式,在集群上进行建模。而单机和分布式的开发代码有一定的区别,本文就将为开发者们介绍,基于TensorFlow进行分布式开发的两种方式,帮助开发者在实践的过程中,更好地选择模块的开发方向。
基于TensorFlow原生的分布式开发
同步更新流程
(图片来源:TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems)
异步更新流程
(图片来源:TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems)
TensorFlow是基于ps、work 两种服务器进行分布式的开发。ps服务器可以只用于参数的汇总更新,让各个work进行梯度的计算。
基于TensorFlow原生的分布式开发的具体流程如下:
首先指定ps 服务器启动参数 –job_name=ps:
点击(此处)折叠或打开
- python distribute.py --ps_hosts=192.168.100.42:2222 --worker_hosts=192.168.100.42:2224,192.168.100.253:2225 --job_name=ps --task_index=0
接着指定work服务器参数(启动两个work 节点) –job_name=work2:
点击(此处)折叠或打开
- python distribute.py --ps_hosts=192.168.100.42:2222 --worker_hosts=192.168.100.42:2224,192.168.100.253:2225 --job_name=worker --task_index=0
- python distribute.py --ps_hosts=192.168.100.42:2222 --worker_hosts=192.168.100.42:2224,192.168.100.253:2225 --job_name=worker --task_index=1
点击(此处)折叠或打开
- tf.app.flags.DEFINE_string("worker_hosts", "默认值", "描述说明")
接收参数后,需要分别注册ps、work,使他们各司其职:
点击(此处)折叠或打开
- ps_hosts = FLAGS.ps_hosts.split(",")
- worker_hosts = FLAGS.worker_hosts.split(",")
- cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
- server = tf.train.Server(cluster,job_name=FLAGS.job_name,task_index=FLAGS.task_index)
- issync = FLAGS.issync
- if FLAGS.job_name == "ps":
- server.join()
- elif FLAGS.job_name == "worker":
- with tf.device(tf.train.replica_device_setter(
- worker_device="/job:worker/task:%d" % FLAGS.task_index,
- cluster=cluster)):
(1)同步更新梯度:
点击(此处)折叠或打开
- rep_op = tf.train.SyncReplicasOptimizer(optimizer,
- replicas_to_aggregate=len(worker_hosts),
- replica_id=FLAGS.task_index,
- total_num_replicas=len(worker_hosts),
- use_locking=True)
- train_op = rep_op.apply_gradients(grads_and_vars,global_step=global_step)
- init_token_op = rep_op.get_init_tokens_op()
- chief_queue_runner = rep_op.get_chief_queue_runner()
(2)异步更新梯度:
点击(此处)折叠或打开
- train_op = optimizer.apply_gradients(grads_and_vars,global_step=global_step)
最后,使用tf.train.Supervisor 进行真的迭代
另外,开发者还要注意,如果是同步更新梯度,则还需要加入如下代码:
点击(此处)折叠或打开
- sv.start_queue_runners(sess, [chief_queue_runner])
- sess.run(init_token_op)
基于TensorFlowOnSpark的分布式开发
作为个推面向开发者服务的移动APP数据统计分析产品,个数所具有的用户行为预测功能模块,便是基于TensorFlowOnSpark这种分布式来实现的。基于TensorFlowOnSpark的分布式开发使其可以在屏蔽了端口和机器IP的情况下,也能够做到较好的资源申请和分配。而在多个千万级应用同时建模的情况下,集群也有良好的表现,在sparkUI中也能看到相对应的资源和进程的情况。最关键的是,TensorFlowOnSpark可以在单机过度到分布式的情况下,使代码方便修改,且容易部署。
基于TensorFlowOnSpark的分布式开发的具体流程如下:
首先,需要使用spark-submit来提交任务,同时指定spark需要运行的参数(–num-executors 6等)、模型代码、模型超参等,同样需要接受外部参数:
点击(此处)折叠或打开
- parser = argparse.ArgumentParser()
- parser.add_argument("-i", "--tracks", help="数据集路径")
- args = parser.parse_args()
之后,准备好参数和训练数据(DataFrame),调用模型的API进行启动。
其中,soft_dist.map_fun是要调起的方法,后面均是模型训练的参数。
点击(此处)折叠或打开
- estimator = TFEstimator(soft_dist.map_fun, args) \
- .setInputMapping({'tracks': 'tracks', 'label': 'label'}) \
- .setModelDir(args.model) \
- .setExportDir(args.serving) \
- .setClusterSize(args.cluster_size) \
- .setNumPS(num_ps) \
- .setEpochs(args.epochs) \
- .setBatchSize(args.batch_size) \
- .setSteps(args.max_steps)
- model = estimator.fit(df)
接下来是soft_dist定义一个 map_fun(args, ctx)的方法:
点击(此处)折叠或打开
- def map_fun(args, ctx):
- ...
- worker_num = ctx.worker_num # worker数量
- job_name = ctx.job_name # job名
- task_index = ctx.task_index # 任务索引
- if job_name == "ps": # ps节点(主节点)
- time.sleep((worker_num + 1) * 5)
- cluster, server = TFNode.start_cluster_server(ctx, 1, args.rdma)
- num_workers = len(cluster.as_dict()['worker'])
- if job_name == "ps":
- server.join()
- elif job_name == "worker":
- with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % task_index, cluster=cluster)):
之后,可以使用tf.train.MonitoredTrainingSession高级API,进行模型训练和预测。
总结
基于TensorFlow的分布式开发大致就是本文中介绍的两种情况,第二种方式可以用于实际的生产环境,稳定性会更高。
在运行结束的时候,开发者们也可通过设置邮件的通知,及时地了解到模型运行的情况。
同时,如果开发者使用SessionRunHook来保存最后输出的模型,也需要了解到,框架代码中的一个BUG,即它只能在规定的时间内保存,超出规定时间,即使运行没有结束,程序也会被强制结束。如果开发者使用的版本是未修复BUG的版本,则要自行处理,放宽运行时间。