题目链接:UVA - 103
题意:现有k个箱子,每个箱子可以用n维向量表示。如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6)可以和箱子(7,3)套接在一起。求出套接的箱子最多的个数前提下任意一种解决方案。
算法:抛开n维不看,本题就是一个DP的最长上升子序列问题,现在加上了n维的限制,想想也不是很难吧,在DP过程中判断每一维都满足条件即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define inf 0x7fffffff
using namespace std;
typedef long long LL; int k,n;
int dp[],pre[];
struct node
{
int an[];
int id;
friend bool operator < (node a,node b)
{
for (int i= ;i<n ;i++)
{
if (a.an[i] != b.an[i]) return a.an[i] < b.an[i];
}
}
}arr[]; void printOut(int u)
{
if (pre[u]!=-) printOut(pre[u]);
if (pre[u]==-) printf("%d",arr[u].id+ );
else printf(" %d",arr[u].id+ );
} int main()
{
while (scanf("%d%d",&k,&n)!=EOF)
{
memset(dp,,sizeof(dp));
memset(pre,-,sizeof(pre));
for (int i= ;i<k ;i++)
{
for (int j= ;j<n ;j++)
scanf("%d",&arr[i].an[j]);
arr[i].id=i;
sort(arr[i].an,arr[i].an+n);
}
sort(arr,arr+k);
// for (int i=0 ;i<k ;i++)
// {
// for (int j=0 ;j<n ;j++)
// cout<<arr[i].an[j]<<" ";
// cout<<endl;
// }
for (int i= ;i<k ;i++)
{
int temp=;
for (int j= ;j<i ;j++)
{
int flag=;
for (int u= ;u<n ;u++)
if (arr[i].an[u]<=arr[j].an[u]) {flag=;break; }
if (!flag && dp[j]>temp)
{
temp=dp[j];
pre[i]=j;
}
}
dp[i]=temp+;
}
int maxlen=-,num=;
for (int i= ;i<k ;i++)
{
if (dp[i]>maxlen)
{
maxlen=dp[i];
num=i;
}
}
printf("%d\n",maxlen);
printOut(num);
printf("\n");
}
return ;
}