http://www.lydsy.com/JudgeOnline/problem.php?id=1004 (题目链接)
题意
n张卡片,染成3种颜色,每种颜色只能染固定张数。给出一些洗牌方案,问染色方案数。
Solution
Burnside引理。
左转题解:LCF
代码
// bzoj1004
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100;
LL f[maxn][maxn][maxn],a[maxn],vis[maxn],size[maxn];
LL n,m,P,R,G,B; LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) res=res*a%P;
a=a*a%P;b>>=1;
}
return res;
}
LL dp() {
memset(vis,0,sizeof(vis));
memset(f,0,sizeof(f));
int cnt=0;
for (int i=1;i<=n;i++) if (!vis[i]) {
size[++cnt]=0;
for (int j=a[i];!vis[j];j=a[j]) vis[j]=1,size[cnt]++;
}
f[0][0][0]=1;
for (int i=1;i<=cnt;i++)
for (int r=R;r>=0;r--)
for (int b=B;b>=0;b--)
for (int g=G;g>=0;g--) {
if (r>=size[i]) f[r][b][g]=(f[r][b][g]+f[r-size[i]][b][g])%P;
if (b>=size[i]) f[r][b][g]=(f[r][b][g]+f[r][b-size[i]][g])%P;
if (g>=size[i]) f[r][b][g]=(f[r][b][g]+f[r][b][g-size[i]])%P;
}
return f[R][B][G]%P;
}
int main() {
scanf("%lld%lld%lld%lld%lld",&R,&B,&G,&m,&P);
n=R+B+G;LL ans=0;
for (int i=1;i<=n;i++) a[i]=i;
ans=(ans+dp())%P;
for (int i=1;i<=m;i++) {
for (int j=1;j<=n;j++) scanf("%lld",&a[j]);
ans=(ans+dp())%P;
}
ans*=power(m+1,P-2);
printf("%lld",ans%P);
return 0;
}