题意
给出n个点m条有向边,源点s,汇点t,k。问s到t的第k短路的路径长度是多少,不存在输出-1.
思路
A*算法是启发式搜索,通过一个估价函数 f(p) = g(p) + h(p) ,其中源点到p的距离是g(p),从p到汇点的距离是h(p),从源点经过p点到达汇点的长度f(p),来决定搜索的方向。
因此反向建图,从汇点出发处理出h数组,然后就可以用A*来做了。用优先队列,每次出队的点为t的话,就cnt++,当cntk的时候,就说明是第k短路了。
注意一开始st的情况,因为要跑出路径,所以要k++。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <cstring>
using namespace std;
const int N = 1011;
const int M = 100011;
const int INF = 0x3f3f3f3f;
struct Edge {
int v, nxt, w;
} edge[M];
struct Node {
int u, g, h;
friend bool operator < (const Node &a, const Node &b) {
return a.g + a.h > b.h + b.g;
}
};
int n, m, h[N], vis[N], s, t, k, U[M], V[M], W[M], head[N], tot;
void Add(int u, int v, int w) {
edge[tot] = (Edge) { v, head[u], w }; head[u] = tot++;
}
void Spfa() {
memset(h, INF, sizeof(h));
memset(vis, 0, sizeof(vis));
queue<int> que; que.push(t);
vis[t] = 1; h[t] = 0;
while(!que.empty()) {
int u = que.front(); que.pop();
vis[u] = 0;
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if(h[v] > h[u] + w) {
h[v] = h[u] + w;
if(!vis[v]) vis[v] = 1, que.push(v);
}
}
}
}
int Astar() {
if(h[s] == INF) return -1;
if(s == t) k++;
Node now = (Node) { s, 0, h[s] };
priority_queue<Node> que; que.push(now);
int cnt = 0;
while(!que.empty()) {
now = que.top(); que.pop();
int u = now.u, gg = now.g, hh = now.h;
// printf("%d : %d - %d\n", u, gg, hh);
if(u == t) cnt++;
if(cnt == k) return gg + hh;
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
now = (Node) { v, gg + w, h[v] };
que.push(now);
}
}
return -1;
}
int main() {
while(~scanf("%d%d", &n, &m)) {
memset(head, -1, sizeof(head)); tot = 0;
for(int i = 1; i <= m; i++) {
scanf("%d%d%d", &U[i], &V[i], &W[i]);
Add(V[i], U[i], W[i]);
}
scanf("%d%d%d", &s, &t, &k);
Spfa();
memset(head, -1, sizeof(head)); tot = 0;
for(int i = 1; i <= m; i++)
Add(U[i], V[i], W[i]);
printf("%d\n", Astar());
}
return 0;
}