出题人真是脑洞堪比黑洞 (然后自己也被吸进去了

理解一遍题意 三个条件可以转化为 1的出度是1, n的入度是1, 2~n-1的出度等于入度

不难发现1-n的最短路符合题意 然而其实还有另一种情况 1为起止点的最短闭环+n为起止点的最短闭环同样满足要求

因此取两者的min作为结果

#include <iostream>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <algorithm>
#define INF 0x3F3F3F3F
using namespace std; int n, val[][];
int dist[];
bool vis[]; void spfa(int s)
{
//计算最短闭环 因此入队节点不是1而是其他所有点
memset(vis, false, sizeof vis);
memset(dist, 0x3f, sizeof dist);
queue<int> q;
for(int i = ; i <= n; i++){
if(i == s) continue;
dist[i] = val[s][i];
q.push(i);
vis[i] = true;
}
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int i = ; i <= n; i++){
if(i == u) continue;
if(dist[i] > dist[u] + val[u][i]){
dist[i] = dist[u] + val[u][i];
if(!vis[i]){
vis[i] = true;
q.push(i);
}
}
}
}
} int main()
{
int path, dist1, distn;
int ans;
while(~scanf("%d", &n)){
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
scanf("%d", &val[i][j]);
}
}
spfa();
path = dist[n];
dist1 = dist[];
spfa(n);
distn = dist[n];
printf("%d\n", min(dist1 + distn, path));
}
return ;
}
05-08 08:44