//高斯滤波器 https://github.com/scutlzk
#include <opencv2\highgui\highgui.hpp>
#include <iostream>
#include <vector> using namespace cv;
using namespace std; void Get_Gaussian_Kernel(double*& gaus_1, const int size, const double sigma_s)
{
gaus_1 = new double[size*size];
double **gaus = new double*[size];
for (int i = 0; i<size; i++)gaus[i] = new double[size]; double sum = 0;
for (int i = -size / 2; i<size / 2 + 1; i++) {
for (int j = -size / 2; j<size / 2 + 1; j++) {
gaus[i + size / 2][j + size / 2] = exp(-((i*i) + (j*j)) / (2 * sigma_s*sigma_s));
sum += gaus[i + size / 2][j + size / 2];
}
} for (int i = 0; i<size; i++) {
for (int j = 0; j<size; j++) {
gaus[i][j] /= sum;
gaus_1[i*size + j] = gaus[i][j]; //使用一维更简单
}
} return;
} void Gaussian_Filter(const char *filename, Mat *&dst,const int size,const double sigma_s)
{
double* templates;
Get_Gaussian_Kernel(templates, size, sigma_s);
Mat src = imread(filename, 3);
dst = new Mat(src.rows, src.cols, CV_8UC3);
namedWindow("src");
imshow("src", src);
for (int j = 0; j<src.rows; j++)
{
for (int i = 0; i<src.cols; i++)
{
double sum0 = 0;
double sum1 = 0;
double sum2 = 0;
int index = 0;
for (int m = j - size/2; m<j + size/2+1; m++)
{
for (int n = i - size / 2; n<i + size / 2 + 1; n++)
{ if (m<0 || n<0 || m>src.rows - 1 || n>src.cols - 1) { index++; continue; }//边缘不处理
sum0 += src.at<Vec3b>(m, n)[0] * templates[index++];
sum1 += src.at<Vec3b>(m, n)[1] * templates[index-1];
sum2 += src.at<Vec3b>(m, n)[2] * templates[index-1]; }
}
sum0 > 255 ? 255 : sum0;
sum1 > 255 ? 255 : sum1;
sum2 > 255 ? 255 : sum2; (*dst).at<Vec3b>(j, i)[0] = sum0;
(*dst).at<Vec3b>(j, i)[1] = sum1;
(*dst).at<Vec3b>(j, i)[2] = sum2;
}
} namedWindow("dst");
imshow("dst", *dst);
waitKey(0);
return;
} int main() {
const char *filename = "123.jpg";
const int Gaussian_Kernel_Size = 9;
const double sigma_s = 3; Mat *dst;
Gaussian_Filter(filename, dst, Gaussian_Kernel_Size, sigma_s);
imwrite("1234.jpg", *dst);
return 0; }