题意 :
分析 :
分析就直接参考这个链接吧 ==> Click here
大体的思路就是
求和顺序不影响结果、故转化一下思路枚举每个最大值对答案的贡献最后累加就是结果
期间计数的过程要用到容斥和多项式求和 ( 利用拉格朗日求即可 ) 具体参考给出的链接
#include<bits/stdc++.h> #define LL long long #define ULL unsigned long long #define scl(i) scanf("%lld", &i) #define scll(i, j) scanf("%lld %lld", &i, &j) #define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k) #define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l) #define scs(i) scanf("%s", i) #define sci(i) scanf("%d", &i) #define scd(i) scanf("%lf", &i) #define scIl(i) scanf("%I64d", &i) #define scii(i, j) scanf("%d %d", &i, &j) #define scdd(i, j) scanf("%lf %lf", &i, &j) #define scIll(i, j) scanf("%I64d %I64d", &i, &j) #define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k) #define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k) #define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k) #define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l) #define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l) #define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l) #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #define lowbit(i) (i & (-i)) #define mem(i, j) memset(i, j, sizeof(i)) #define fir first #define sec second #define VI vector<int> #define ins(i) insert(i) #define pb(i) push_back(i) #define pii pair<int, int> #define VL vector<long long> #define mk(i, j) make_pair(i, j) #define all(i) i.begin(), i.end() #define pll pair<long long, long long> #define _TIME 0 #define _INPUT 0 #define _OUTPUT 0 clock_t START, END; void __stTIME(); void __enTIME(); void __IOPUT(); using namespace std; ; ; LL pow_mod(LL a, LL b) { a %= mod; LL ret = ; while(b){ ) ret = (ret * a) % mod; a = ( a * a ) % mod; b >>= ; } return ret; } namespace polysum { #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) ; LL a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D]; LL powmod(LL a,LL b){LL res=;a%=mod;assert(b>=);){)res=res*a%mod;a=a*a%mod;}return res;} LL calcn(int d,LL *a,LL n) { // a[0].. a[d] a[n] if (n<=d) return a[n]; p1[]=p2[]=; rep(i,,d+) { LL t=(n-i+mod)%mod; p1[i+]=p1[i]*t%mod; } rep(i,,d+) { LL t=(n-d+i+mod)%mod; p2[i+]=p2[i]*t%mod; } LL ans=; rep(i,,d+) { LL t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod; ) ans=(ans-t+mod)%mod; else ans=(ans+t)%mod; } return ans; } void init(int M) { f[]=f[]=g[]=g[]=; rep(i,,M+) f[i]=f[i-]*i%mod; g[M+]=powmod(f[M+],mod-); per(i,,M+) g[i]=g[i+]*(i+)%mod; } LL polysum(LL m,LL *a,LL n) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i] LL b[D]; ;i<=m;i++) b[i]=a[i]; b[m+]=calcn(m,b,m+); rep(i,,m+) b[i]=(b[i-]+b[i])%mod; ,b,n-); } LL qpolysum(LL R,LL n,LL *a,LL m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i ) return polysum(n,a,m); a[m+]=calcn(m,a,m+); LL r=powmod(R,mod-),p3=,p4=,c,ans; h[][]=;h[][]=; rep(i,,m+) { h[i][]=(h[i-][]+a[i-])*r%mod; h[i][]=h[i-][]*r%mod; } rep(i,,m+) { LL t=g[i]*g[m+-i]%mod; ) p3=((p3-h[i][]*t)%mod+mod)%mod,p4=((p4-h[i][]*t)%mod+mod)%mod; ]*t)%mod,p4=(p4+h[i][]*t)%mod; } c=powmod(p4,mod-)*(mod-p3)%mod; rep(i,,m+) h[i][]=(h[i][]+h[i][]*c)%mod; rep(i,,m+) C[i]=h[i][]; ans=(calcn(m,C,n)*powmod(R,n)-c)%mod; ) ans+=mod; return ans; } } LL arr[maxn]; int main(void){__stTIME();__IOPUT(); int n; polysum::init(maxn); while(~sci(n)){ ; i<=n; i++) scl(arr[i]); sort(arr+, arr++n); arr[] = ; LL now = ; LL b[maxn]; LL ans = ; ; i<=n; i++){ ]){ now = (now * arr[i]) % mod; continue; } b[] = ; ; j<=n-i+; j++) b[j] = (LL)j * ((pow_mod((LL)j, n-i+) - pow_mod((LL)j-1LL, n-i+)%mod)+mod)%mod; LL tmp = ((polysum::polysum(n-i+, b, arr[i]+) - polysum::polysum(n-i+, b, arr[i-]+)%mod)+mod)%mod; ans = (ans + (tmp%mod * now%mod)%mod)%mod; now = (now * arr[i]) % mod; } printf("%lld\n", ans); } __enTIME();;} void __stTIME() { #if _TIME START = clock(); #endif } void __enTIME() { #if _TIME END = clock(); cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl; #endif } void __IOPUT() { #if _INPUT freopen("in.txt", "r", stdin); #endif #if _OUTPUT freopen("out.txt", "w", stdout); #endif }
注 :
N + 1 个点能确定一个 N 次多项式、故拉格朗日插值需要确定 ( 最高次次数 + 1 ) 个点的值
namespace polysum { #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) ;//可能需要用到的最高次 LL a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D]; LL powmod(LL a,LL b){LL res=;a%=mod;assert(b>=);){)res=res*a%mod;a=a*a%mod;}return res;} LL calcn(int d,LL *a,LL n) { // a[0].. a[d] a[n] if (n<=d) return a[n]; p1[]=p2[]=; rep(i,,d+) { LL t=(n-i+mod)%mod; p1[i+]=p1[i]*t%mod; } rep(i,,d+) { LL t=(n-d+i+mod)%mod; p2[i+]=p2[i]*t%mod; } LL ans=; rep(i,,d+) { LL t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod; ) ans=(ans-t+mod)%mod; else ans=(ans+t)%mod; } return ans; } void init(int M) {//用到的最高次 f[]=f[]=g[]=g[]=; rep(i,,M+) f[i]=f[i-]*i%mod; g[M+]=powmod(f[M+],mod-); per(i,,M+) g[i]=g[i+]*(i+)%mod; } LL polysum(LL m,LL *a,LL n) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i] ;i<=m;i++) b[i]=a[i]; b[m+]=calcn(m,b,m+); rep(i,,m+) b[i]=(b[i-]+b[i])%mod; ,b,n-); } LL qpolysum(LL R,LL n,LL *a,LL m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i ) return polysum(n,a,m); a[m+]=calcn(m,a,m+); LL r=powmod(R,mod-),p3=,p4=,c,ans; h[][]=;h[][]=; rep(i,,m+) { h[i][]=(h[i-][]+a[i-])*r%mod; h[i][]=h[i-][]*r%mod; } rep(i,,m+) { LL t=g[i]*g[m+-i]%mod; ) p3=((p3-h[i][]*t)%mod+mod)%mod,p4=((p4-h[i][]*t)%mod+mod)%mod; ]*t)%mod,p4=(p4+h[i][]*t)%mod; } c=powmod(p4,mod-)*(mod-p3)%mod; rep(i,,m+) h[i][]=(h[i][]+h[i][]*c)%mod; rep(i,,m+) C[i]=h[i][]; ans=(calcn(m,C,n)*powmod(R,n)-c)%mod; ) ans+=mod; return ans; } }
拉格朗日插值模板 (dls版)
-------------------------------分 割 线-------------------------------
链接题解用到的化简容斥的多项式展开式如下
( x - 1 ) ^ k
= x^k
+ C(k, 1) * x^(k-1) * (-1)^1
+ C(k, 2) * x^(k-2) * (-1)^2
+ ......
+ C(k, k) * x^(k-k) * (-1)^k