题目描述

输入两个正整数a和b,求a^b的因子和。结果太大,只要输出它对9901的余数。

输入输出格式

输入格式:

仅一行,为两个正整数a和b(0≤a,b≤50000000)。

输出格式:

a^b的因子和对9901的余数。

输入输出样例

输入样例#1:

2 3
输出样例#1:

15
看似不可做,其实非常简单
任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
其中 pi 均为素数
那么A^B=(p1^(k1*B))*(p2^(k2*B))*(p3^(k3*B))*....*(pn^(kn*B))
显然ans=∑∑.....∑(p1^i1)*(p2^i2)*.....(pk^ik)
   =∑∑.....∑(pk^ik) 但是k*B最大可以达到30000×50000000(极限估算)
这里我们运用指数取模的方法,因为模数很小
根据费马小定理,我们证出:
a^x≡a^(x%μ(p)) (mod p) μ(p)=9900,p=9901
这样我们发现,其实存在长度为μ(p)的循环节
这样,就算k*B再大,我们也可以通过O(μ(p))的求和处理算出循环节
然后就可以直接算出

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol A,B,pri[],cnt[],ans,pw[],tot;
int main()
{lol x,i,j;
cin>>A>>B;
x=A;
for (i=;i*i<=A;i++)
{
if (x%i==)
{
pri[++tot]=i;
while (x%i==)
{
cnt[tot]++;
x/=i;
}
}
}
if (x!=)
{
pri[++tot]=x;
cnt[tot]=;
}
for (i=;i<=tot;i++)
cnt[i]*=B;
ans=;
for (i=tot;i>=;i--)
{
pw[]=;
lol s=,as=;
for (j=;j<=&&j<=cnt[i];j++)
{
pw[j]=pw[j-]*pri[i]%;
s=(s+pw[j])%;
if (cnt[i]%==j)
as=s;
}
ans=(ans*((cnt[i]/)*s+as)%)%;
}
cout<<ans;
}
05-08 08:16