P1891学姐的逛街计划
描述
doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课.
偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天.
doc 很忧伤, 因为他还要陪学姐去逛街呢.
后来, doc发现, 如果自己哪一天智商更高一些, 陪学姐逛街会得到更多的好感度.
现在 doc 决定做一个实验来验证自己的猜想, 他拜托 小岛 预测出了 自己 未来 3n 天中, 每一天的智商.
doc 希望在之后的 3n 天中选出一些日子来陪学姐逛街, 要求在不违反校规的情况下, 陪学姐逛街的日子自己智商的总和最大.
可是, 究竟这个和最大能是多少呢?
格式
输入格式
第一行给出两个整数, n 和 k, 表示我们需要设计之后 3n 天的逛街计划, 且任意连续 n 天中不能请假超过 k 天.
第二行给出 3n 个整数, 依次表示 doc 每一天的智商有多少. 所有数据均为64位无符号整数
输出格式
输出只有一个整数, 表示可以取到的最大智商和.
样例1
样例输入1
样例输出1
限制
对于 20% 的数据, 1 <= n <= 12 , k = 3.
对于 70% 的数据, 1 <= n <= 40 .
对于 100% 的数据, 1 <= n <= 200 , 1 <= k <= 10.
【思路】
一道线性规划的题目,好神奇=-=。
这是题解中的思路:
【代码】
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long LL ;
const int maxn = +;
const int INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int& flow,LL& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t] , cost+=a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,LL& cost) {
int flow=; cost=;
while(SPFA(s,t,flow,cost)) ;
return flow;
}
} mc; int n,m,k;
int a[maxn]; int main() {
scanf("%d%d",&n,&k);
FOR(i,,*n) scanf("%d",&a[i]);
mc.init(*n+);
int s=,t=*n+; FOR(i,,n+) mc.AddEdge(s,i,,-a[i-]);
FOR(i,n+,*n+) mc.AddEdge(i-n,i,,-a[i-]);
FOR(i,n+,*n+) mc.AddEdge(i,*n+,,-a[i-+n]);
FOR(i,,*n+) mc.AddEdge(i-,i,k,);
mc.AddEdge(s,,k,);
mc.AddEdge(*n+,t,k,); LL cost;
mc.Mincost(s,t,cost);
printf("%lld",-cost);
return ;
}