题意 : 给你一个数n,让你找出几个素数,使其相加为n,输出这些素数。
思路 :
哥德巴赫猜想 :
任何一个大于 6的偶数都可以表示成两个素数之和。
任何一个大于9的奇数都可以表示成三个素数之和。
而在该题中,偶数中2本身就是个素数,奇数中小于9的都是素数,所以只要写一个判断素数的函数即可,这样不在范围内的数就可以直接判断输出了。
任何一个整数N(N>=2)最多由三个素数相加构成。要分情况考虑:
1. 如果N为偶数,1)如果N==2,直接输出;
2)如果N>2,那么N一定可以写成两个素数的和;
2.如果N为奇数,1)如果N自身就是素数,则直接输出;
2)如果N由两个素数构成,这两个素数只可能是:2 和 N-2;
3)N为三个素数之和。
#include <stdio.h>
#include <string.h>
#include <iostream> using namespace std ; bool prime(int n)
{
for(int i = ; i * i <= n ; i++)
{
if(n % i == ) return false ;
}
return true ;
}
int main()
{
int T,n ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
if(n % == )
{
if(n == )
printf("2\n") ;
// else if(n == 4) printf("2 2\n") ;
else{
for(int i = ; i <= n ; i += )
{
if(prime(i) && prime(n-i))
{
printf("%d %d\n",i,n-i) ;
break ;
}
}
}
}
else
{
if(prime(n)) printf("%d\n",n) ;
else if(prime(n-)) printf("2 %d\n",n-) ;
//else if(prime(n-4)) printf("2 2 %d\n",n-4) ;
else
{
bool flag = false ;
for(int i = ; i <= n ; i += )
{
for(int j = ; j <= n ; j += )
{
if(prime(i) && prime(j) && prime(n-i-j))
{
printf("%d %d %d\n",i,j,n-i-j);
flag = true ;
break;
}
}
if(flag) break ;
}
}
}
}
return ;
}