问题描述
  C国共有n个城市。有n-1条双向道路,每条道路连接两个城市,任意两个城市之间能互相到达。小R来到C国旅行,他共规划了m条旅行的路线,第i条旅行路线的起点是s,终点是t。在旅行过程中,小R每行走一单位长度的路需要吃一单位的食物。C国的食物只能在各个城市中买到,而且不同城市的食物价格可能不同。
  然而,小R不希望在旅行中为了购买较低价的粮食而绕远路,因此他总会选择最近的路走。现在,请你计算小R规划的每条旅行路线的最小花费是多少。
输入格式
  第一行包含2个整数n和m。
  第二行包含n个整数。第i个整数w表示城市i的食物价格。
  接下来n-1行,每行包括3个整数u, v, e,表示城市u和城市v之间有一条长为e的双向道路。
  接下来m行,每行包含2个整数s和t,分别表示一条旅行路线的起点和终点。
输出格式
  输出m行,分别代表每一条旅行方案的最小花费。
样例输入
6 4
1 7 3 2 5 6
1 2 4
1 3 5
2 4 1
3 5 2
3 6 1
2 5
4 6
6 4
5 6
样例输出
35
16
26
13
样例说明
  对于第一条路线,小R会经过2->1->3->5。其中在城市2处以7的价格购买4单位粮食,到城市1时全部吃完,并用1的价格购买7单位粮食,然后到达终点。
评测用例规模与约定
  前10%的评测用例满足:nm ≤ 20, w ≤ 20;
  前30%的评测用例满足:nm ≤ 200;
  另有40%的评测用例满足:一个城市至多与其它两个城市相连。
  所有评测用例都满足:1 ≤ nm ≤ 10,1 ≤ w ≤ 10,1 ≤ e ≤ 10000。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
vector<pair<int,int> > ss[100000+1];
int cost[100000+1];
int visited[100000+1];
ll c,mc,ml,l;
int t;
void dfs(int m,int n)
{
if(m==n)
{
mc=min(c,mc);
return;
}
for(int i=0;i<ss[m].size();i++)
{
int a=ss[m][i].first,b=ss[m][i].second;
if(!visited[a])
{
if(c+b*t>mc)continue;
if(l+b>ml)continue;
int fc=c,fl=l,ft=t;
visited[a]=1;c+=b*t;
l+=b;t=min(t,cost[a]);
dfs(a,n);
visited[a]=0;c=fc;l=fl;t=ft;
}
}
}
int main()
{
int n,m;cin>>n>>m;
for(int i=1;i<n+1;i++)
{
cin>>cost[i];
}
for(int i=1;i<n;i++)
{
int u,v,e;cin>>u>>v>>e;
ss[u].push_back(make_pair(v,e));
ss[v].push_back(make_pair(u,e));
}
while(m--)
{
int start,en;cin>>start>>en;
int d[n+1];memset(d,127,sizeof(d));
int vis[n+1]={0};
priority_queue<pair<int,int> > s;
while(!s.empty())s.pop();
s.push(make_pair(0,start));
while(!s.empty())
{
int v=s.top().second;s.pop();
if(v==en)break;
if(vis[v])continue;
vis[v]=1;
for(int i=0;i<ss[v].size();i++)
{
int node=ss[v][i].first,len=ss[v][i].second;
if(!vis[node])
{
if(len+d[v]<d[node])
{
d[node]=len+d[v];
s.push(make_pair(-d[node],node));
}
}
}
}
ml=d[en];c=0;
mc=ml*cost[start];
memset(visited,0,sizeof(visited));
l=0;t=cost[start];
visited[start]=1;
dfs(start,en);
cout<<mc<<endl;
}
return 0;
}

ccf 201503-5 最小花费   这题交上去只有10分嗨!求大佬的题解啊-LMLPHP

05-08 08:09