interlinkage:
https://ac.nowcoder.com/acm/contest/375/D
description:
solution:
- 我们枚举步兵的数量$x$,还剩下$S-x$张牌。$x$张步兵要分成$n$份,$S-x$剩下的要分成$m+1$份,其中第$m+1$份的含义是不锻造,注意可以为空
- $ans=\sum_{x=l}^{r}\dbinom{x+n-1}{n-1}\dbinom{S-x+m}{m}$
- 但是直接这样算的话要么爆时间,要么爆空间
- 发现答案的式子其实相当于从$(0,0)$走到$(S,n+m)$必须经过线段$(l,n)->(r,n)$的方案数
- 可能有人会疑惑为什么是从$(0,0)$走到$(S,n+m)$,感觉像是走到$(S,n+m+1)$啊。但是仔细观察会发现,因为我们枚举的是与线段$(l,n)->(r,n)$的交点,也就是说当走到$y=n$的时候交点就已经固定了,就不能再向右走了。因此从$(0,0)$到$(x,n)$相当于把$x$个横步插入到$n$个部分中。从$(x,n)$到$(S,n+m)$相当于把$S-x$的横步插入到$m+1$个部分中,因为这个时候走到$y=n+m$的时候还可以向右走
- 该方案数=第$l$步向右走时走到纵坐标$(0,n-1)$的方案数-第$r+1$步向右走时走到纵坐标$(0,n-1)$的方案数
- 走到第$p$步向右走时走到纵坐标$(0,n-1)$的方案数为$\sum_{i=0}^{n-1}\dbinom{p+i-1}{p-1}\dbinom{S-p+n+m-i}{S-p}$
- 这样就比较好算了
#include<bits/stdc++.h>
using namespace std; const int N=2e7+,P=;
inline int add(int x,int y){return x+y>=P?x+y-P:x+y;}
inline int dec(int x,int y){return x-y<?x-y+P:x-y;}
inline int mul(int x,int y){return 1ll*x*y-1ll*x*y/P*P;}
int inv[N],f[N],g[N];
int n,m,s,l,r;
int calc(int p)
{
if(p>s)return ;
int res=;
f[]=g[]=;
for (int i=;i<=n+m;i++)
{
g[i]=1ll*g[i-]*(p+i-)%P*inv[i]%P,
f[i]=1ll*f[i-]*(s-p+i)%P*inv[i]%P;
}
for (int i=;i<n;i++) res=add(res,mul(f[n+m-i],g[i]));
return res;
}
int main()
{
scanf("%d%d%d%d%d",&n,&m,&s,&l,&r);
inv[]=inv[]=;
for (int i=;i<N;i++) inv[i]=1ll*(P-P/i)*inv[P%i]%P;
printf("%d\n",dec(calc(l),calc(r+)));
return ;
}