题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738
题意:给定一个n个节点m条边的无向图(可能不连通、有重边),每条边有一个权值。判断其连通性,若双连通,输出-1;若非连通,输出0;否则,输出权值最小的桥的权值。
思路:进行双连通域分解,记下连通块的个数和所有桥的情况,对应输出结果即可。
注意对重边的处理。这里我按照上一道题学到的姿势如法炮制:先把所有边按“字典序”排序(u, v, w),这样重边聚集在一起了,然后扫描一遍,发现重边即在结构体Edge中打重边标记;由于重边一定不是桥,因此选哪个的权值实际上无所谓。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#define CLEAR(A, X) memset(A, X, sizeof(A))
#define REP(N) for(int i=0; i<(N); i++)
#define REPE(N) for(int i=1; i<=(N); i++)
#define FREAD(FN) freopen((FN), "r", stdin)
#define pb(a) push_back(a) using namespace std; const int MAX_N = ;
const int MAX_M = ;
const int INF = ;
int n, m; struct Edge
{
int v, next;
int w;
bool isBrg;
bool isDup;
}edges[MAX_M];
int numE;
int head[MAX_N];
int low[MAX_N], dfn[MAX_N], clock;
int inStack[MAX_N], S[MAX_N], topS;
int block, belong[MAX_N];
int numBrg;
int cnt;//连通块个数 void init(){
numE = ;
clock = block = topS = ;
numBrg = ;
CLEAR(low, );
CLEAR(dfn, );
CLEAR(head, -);
CLEAR(belong, );
CLEAR(inStack, );
} void addEdge(int u, int v, int w, bool isDup){
edges[numE].v = v;
edges[numE].w = w;
edges[numE].isBrg = ;
edges[numE].isDup = isDup;
edges[numE].next = head[u];
head[u] = numE++; //反向边
edges[numE].v = u;
edges[numE].w = w;
edges[numE].isBrg = ; //这里之前忘清零了,一直WA。。。
edges[numE].isDup = isDup;
edges[numE].next = head[v];
head[v] = numE++;
} void bcc(int u, int p, int isDup){
low[u] = dfn[u] = ++clock;
S[topS++] = u;
inStack[u] = ;
for(int i=head[u]; i != -; i = edges[i].next){
int v = edges[i].v;
if(v == p && (!isDup)) continue;
if(!dfn[v]){
bcc(v, u, edges[i].isDup);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u]){//bridge
numBrg++;
edges[i].isBrg = ;
edges[i^].isBrg = ;
}
}else if(inStack[v]){//backward
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]){//new bcc
block++;
int t;
do{
t = S[--topS];
inStack[t] = ;
belong[t] = block;
}while(t != u);
}
} struct Node
{
int u, v, w;
Node(){}
Node(int uu, int vv, int ww):u(uu), v(vv), w(ww){}
}nodes[MAX_M];
bool cmp(Node a, Node b){
if(a.u == b.u){
if(a.v == b.v) return a.w < b.w;
return a.v < b.v;
}
return a.u < b.u;
}
bool same(Node a, Node b){
return a.u == b.u && a.v == b.v;
} int main()
{
FREAD("4738.txt");
while(~scanf("%d%d", &n, &m) && !(n== && m==)){
init();
REP(m){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
if(u > v) swap(u, v);//保持顺序
nodes[i] = Node(u, v, w);
}
sort(nodes, nodes+m, cmp);
int cur = , i = ;
int flagDup = ;
while(cur < m){
while(i < m && same(nodes[cur], nodes[i])){
flagDup = ;
i++;
}//重边一定不是桥,
if(flagDup) addEdge(nodes[cur].u, nodes[cur].v, nodes[cur].w, true);
else addEdge(nodes[cur].u, nodes[cur].v, nodes[cur].w, false);
flagDup = ;
cur = i++;
}
cnt = ;
REPE(n){
if(!dfn[i]){
bcc(i, , );
cnt++;
}
}
int ans = INF;
if(cnt > ) ans = ;//非连通
else if(cnt== && !numBrg) ans = -;//边双连通
else{//有桥
// REPE(n){
// for(int j=head[i]; j != -1; j = edges[j].next){
// int v = edges[j].v;
// if(belong[i] != belong[v])
// ans = min(ans, edges[j].w);
// }
// }
REPE(numE){
if(edges[i].isBrg)
ans = min(ans, edges[i].w);
}
if(ans == ) ans = ;//至少派一人
}
printf("%d\n", ans);
}
return ;
}
判桥用 edges[i].isBrg 或 belong[u] == belong[v]都可以,二者等价。
多组样例,我开始用第一种但忘记在addEdge中把isBrg清零了才会WA。