UVA 10385 - Duathlon

题目链接

题意:一些运动员,參加铁人两项,跑步r千米,骑车k千米,如今知道每一个人的跑步和骑车速度,问是否能设置一个r和k,保持r + k = t,使得第n个人会取胜,假设能够求出时间和r,k

思路:三分法,把每一个人列出一个带r的方程求时间,其它人减去最后一个人就是相差的时间,发现这些方程都是一元一次线性方程,而问题相当于求每一个x轴上,值最小的那个,这些线画出来,会发现变成一个上凸函数,是单峰函数,能够用三分法求解

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 25; double t, v1[N], v2[N];
int n; double cal(double r) {
double k = t - r;
double ans = 1e100;
double t1 = r / v1[n - 1] + k / v2[n - 1];
for (int i = 0; i < n - 1; i++) {
double t2 = r / v1[i] + k / v2[i];
ans = min(ans, t2 - t1);
}
return ans;
} int main() {
while (~scanf("%lf", &t)) {
scanf("%d", &n);
for (int i = 0; i < n; i++)
scanf("%lf%lf", &v1[i], &v2[i]);
double l = 0, r = t;
for (int i = 0; i < 100; i++) {
double midl = (l * 2 + r) / 3;
double midr = (l + r * 2) / 3;
if (cal(midl) > cal(midr)) r = midr;
else l = midl;
}
double ti = cal(l);
if (cal(l) < 0.00) printf("The cheater cannot win.\n");
else printf("The cheater can win by %.0lf seconds with r = %.2lfkm and k = %.2lfkm.\n", ti * 3600, l, t - l);
}
return 0;
}

05-17 13:11