题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1148

很常见的排序贪心题。。。。。。
假设我们得到了一个最优序列,记s[n]=w[1]+w[2]+...+w[n]
对于第n个和第n+1个,剩余容量为:
min(c[n]-s[n-1],c[n+1]-s[n-1]-w[n])
如果交换第n个和第n+1个,剩余容量为:
min(c[n+1]-s[n-1],c[n]-s[n-1]-w[n+1])
因为我们得到的是一个最优序列,所以不交换比交换优,所以:
min(c[n]-s[n-1],c[n+1]-s[n-1]-w[n])  > min(c[n+1]-s[n-1],c[n]-s[n-1]-w[n+1])
容易知道c[n]-s[n-1]>c[n]-s[n-1]-w[n+1],c[n+1]-s[n-1]-w[n]<c[n+1]-s[n-1]
所以就是:
c[n+1]-s[n-1]-w[n]>c[n]-s[n-1]-w[n+1]
c[n]+w[n]<c[n+1]+w[n+1]
所以就是按ci+wi从小到大排序。
我们先按ci+wi从小到大排序,然后一个一个取,如果不能去,就在已取的中找质量最大的,看替换或会不会更优,这个可以用优先队列。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define re(i,a,b) for(i=a;i<=b;i++)
#define red(i,a,b) for(i=a;i>=b;i--)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N;
struct Tdata{LL C,W;}data[maxN+]; inline bool cmp(Tdata a,Tdata b){return a.C+a.W<b.C+b.W;} struct cmp2{inline bool operator()(Tdata a,Tdata b){return a.W<b.W;}};
priority_queue<Tdata,vector<Tdata>,cmp2> Q;
LL ans; int main()
{
freopen("bzoj1148.in","r",stdin);
freopen("bzoj1148.out","w",stdout);
int i;
N=gint();
re(i,,N)data[i].C=LL(gint()),data[i].W=LL(gint());
sort(data+,data+N+,cmp);
re(i,,N)
if(ans<=data[i].C)
{
ans+=data[i].W;
Q.push(data[i]);
}
else
if(data[i].W<Q.top().W && ans-Q.top().W<=data[i].C)
{
ans-=Q.top().W;
Q.pop();
ans+=data[i].W;
Q.push(data[i]);
}
cout<<Q.size()<<endl;
cout<<ans<<endl;
return ;
}
05-07 15:50