NumPy基础操作(1)

(注:记得在文件开头导入import numpy as np)

目录:

  • 数组的创建
  • 强制类型转换与切片
  • 布尔型索引
  • 结语

数组的创建

  • 相关函数

    np.array(), np.zeros(), np.zeros_like(), np.ones(), np.ones_like(), np.empty(), np.asarray()
  • 调用方法

    data1 = [1.2, 23, 24, 1.8]
    arr1 = np.array(data1)
    print(arr1)
    print(arr1.ndim) #数组的维度
    print(arr1.shape) #数组的形状
    print((arr1.dtype)) #数组元素的数据类型 #输出结果
    out:
    [ 1.2 23. 24. 1.8]
    1
    (4,)
    float64
    data2 = [[1, 2, 3, 4], [5, 6, 7, 9]]    #如果要用array生成多维的数组必须要元素个数对称
    arr2 = np.array(data2)
    arr2_like = np.zeros_like(arr2) #产生形状与arr2相同的全0数组
    arr4 = np.ones((3,2))
    arr7 = np.asarray(data2) #将输入转换为一个ndarray数组
    print(arr2);print("************")
    print(arr2_like);print("************")
    print(arr4);print("************")
    print(arr7) #输出结果
    out:
    [[1 2 3 4]
    [5 6 7 9]]
    ************
    [[0 0 0 0]
    [0 0 0 0]]
    ************
    [[1. 1.]
    [1. 1.]
    [1. 1.]]
    ************
    [[1 2 3 4]
    [5 6 7 9]]

强制类型转换与切片

  • 相关函数

    array.astype(), array[x:y]  #array是一个已定义的数组
    np.float64, np.int64, np.string_ #数组基础数据类型
  • 强制类型转换
    #在生成数据时就直接指定ndarray数组的类型
    arr8 = np.array([1,1,7], dtype=np.float64)
    print(arr8.dtype)
    print("************") #通过ndarray的方法astype更改转换数组的类型,强制类型转换
    arr9 = arr8.astype(np.int64)
    print(arr9.dtype)
    print("************")
    #Numpy的数据类型:np.object, np.string_, np.unicode_
    numeric_strings = np.array(['1.23', '-9.6', ''], dtype=np.string_)
    print(numeric_strings.astype(float).dtype)
    print("************") #输出结果
    out:
    float64
    ************
    int64
    ************
    float64
    ************
  • 数组切片

    #数组切片是原数组的视图,对切片的任何改变都会在原始数组数据上得到体现
    #for example
    arr = np.arange(10)
    arr_slice = arr[5:8]
    arr_slice[1] = 12432
    print(arr)
    #输出结果:[ 0 1 2 3 4 5 12432 7 8 9]
    arr_slice[:] = 187
    print(arr)
    #输出结果:[ 0 1 2 3 4 187 187 187 8 9] #如果你是真的想要一份数组的复制版本,你需要明显的表达出来
    arr_copy = arr[:].copy()
    arr_copy[:] = 1
    print(arr)
    print(arr_copy)
    #输出结果:[ 0 1 2 3 4 187 187 187 8 9]
    # [1 1 1 1 1 1 1 1 1 1] #二维数组的访问
    arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    print(arr2d[2])
    print(arr2d[0,2]) #这两种索引效果是相同的
    print(arr2d[0][2])
    print(arr2d[:2, 1:]) #在切片中再切片 #输出结果:[7 8 9]
    #
    #
    # [[2 3]
    # [5 6]]

布尔型索引

  • 布尔型索引

    names = np.array(['Bob','Joe', 'Will', 'Bob', 'Will', 'Joe', 'Jason'])
    data = np.random.randn(7,4) print(names=='Bob')
    print(data[names == 'Bob', 2:]) #线索出为True的行组成新的数组,再进行数组切片
    #输出结果
    #[ True False False True False False False]
    #[[ 0.26361357 -0.98694019]
    # [ 0.34286995 0.0441788 ]] mask =(names=='Bob')|(names=='Will') #在布尔型数组中Python关键之and 以及or无效
    print(mask)
    #输出结果
    #[ True False True True True False False] #通过布尔性数组更改数组中的值
    data[data < 0] = 0 #将数组中小于0的元素的值全部改为0

结语

第一次写博客排版和程序都有些粗糙,望见谅。(注:相关知识点从《用Python进行数据分析》搬运至此)

05-07 15:47