#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include <iostream>
using namespace cv;
using namespace std; int main( )
{
//【0】改变console字体颜色
system("color 4F"); //【1】载入源图片
Mat img_1 = imread("1.jpg", );
Mat img_2 = imread( "2.jpg", );//【2】利用SURF检测器检测的关键点
int minHessian = ;
SURF detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); //【3】计算描述符(特征向量)
SURF extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); //【4】采用FLANN算法匹配描述符向量
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = ; double min_dist = ; //【5】快速计算关键点之间的最大和最小距离
for( int i = ; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//输出距离信息
printf("> 最大距离(Max dist) : %f \n", max_dist );
printf("> 最小距离(Min dist) : %f \n", min_dist ); //【6】存下符合条件的匹配结果(即其距离小于2* min_dist的),使用radiusMatch同样可行
std::vector< DMatch > good_matches;
for( int i = ; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} //【7】绘制出符合条件的匹配点
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //【8】输出相关匹配点信息
for( int i = ; i < good_matches.size(); i++ )
{ printf( ">符合条件的匹配点 [%d] 特征点1: %d -- 特征点2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } //【9】显示效果图
imshow( "匹配效果图", img_matches ); //按任意键退出程序
waitKey();
return ;
}
05-07 15:44