Spark 2.4.0编程指南--Spark SQL UDF和UDAF
更多资源
视频
- Spark 2.4.0编程指南--Spark SQL UDF和UDAF(bilibili视频) : https://www.bilibili.com/video/av38193405/?p=4
<iframe width="800" height="500" src="//player.bilibili.com/player.html?aid=38193405&cid=67137841&page=4" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true"> </iframe>
文档
前置条件
- 已安装好java(选用的是java 1.8.0_191)
- 已安装好scala(选用的是scala 2.11.121)
- 已安装好hadoop(选用的是Hadoop 3.1.1)
- 已安装好spark(选用的是spark 2.4.0)
技能标签
- 了解UDF 用户定义函数(User-defined functions, UDFs)
- 了解UDAF (user-defined aggregate function), 用户定义的聚合函数
- UDF示例(统计行数据字符长度)
- UDF示例(统计行数据字符转大写)
- UDAF示例(统计总行数)
- UDAF示例(统计最大收入)
- UDAF示例(统计平均收入)
- UDAF示例(统计按性别分组的最大收入)
- 官网: http://spark.apache.org/docs/2.4.0/sql-getting-started.html#aggregations
UDF
用户定义函数(User-defined functions, UDFs)是大多数 SQL 环境的关键特性,用于扩展系统的内置功能。 UDF允许开发人员通过抽象其低级语言实现来在更高级语言(如SQL)中启用新功能。 Apache Spark 也不例外,并且提供了用于将 UDF 与 Spark SQL工作流集成的各种选项。
- 用户定义函数(User-defined functions, UDFs)
- UDF对表中的单行进行转换,以便为每行生成单个对应的输出值
##示例
- 得到SparkSession
BaseSparkSession
/**
* 得到SparkSession
* 首先 extends BaseSparkSession
* 本地: val spark = sparkSession(true)
* 集群: val spark = sparkSession()
*/
class BaseSparkSession {
var appName = "sparkSession"
var master = "spark://standalone.com:7077" //本地模式:local standalone:spark://master:7077
def sparkSession(): SparkSession = {
val spark = SparkSession.builder
.master(master)
.appName(appName)
.config("spark.eventLog.enabled","true")
.config("spark.history.fs.logDirectory","hdfs://standalone.com:9000/spark/log/historyEventLog")
.config("spark.eventLog.dir","hdfs://standalone.com:9000/spark/log/historyEventLog")
.getOrCreate()
spark.sparkContext.addJar("/opt/n_001_workspaces/bigdata/spark-scala-maven-2.4.0/target/spark-scala-maven-2.4.0-1.0-SNAPSHOT.jar")
//import spark.implicits._
spark
}
def sparkSession(isLocal:Boolean = false): SparkSession = {
if(isLocal){
master = "local"
val spark = SparkSession.builder
.master(master)
.appName(appName)
.getOrCreate()
//spark.sparkContext.addJar("/opt/n_001_workspaces/bigdata/spark-scala-maven-2.4.0/target/spark-scala-maven-2.4.0-1.0-SNAPSHOT.jar")
//import spark.implicits._
spark
}else{
val spark = SparkSession.builder
.master(master)
.appName(appName)
.config("spark.eventLog.enabled","true")
.config("spark.history.fs.logDirectory","hdfs://standalone.com:9000/spark/log/historyEventLog")
.config("spark.eventLog.dir","hdfs://standalone.com:9000/spark/log/historyEventLog")
.getOrCreate()
// spark.sparkContext.addJar("/opt/n_001_workspaces/bigdata/spark-scala-maven-2.4.0/target/spark-scala-maven-2.4.0-1.0-SNAPSHOT.jar")
//import spark.implicits._
spark
}
}
/**
* 得到当前工程的路径
* @return
*/
def getProjectPath:String=System.getProperty("user.dir")
}
UDF (统计字段长度)
- 对数据集中,每行数据的特定字段,计算字符长度
- 通过 spark.sql 直接在字段查询处调用函数名称
/**
* 自定义匿名函数
* 功能: 得到某列数据长度的函数
*/
object Run extends BaseSparkSession{
def main(args: Array[String]): Unit = {
val spark = sparkSession(true)
val ds = spark.read.json("hdfs://standalone.com:9000/home/liuwen/data/employees.json")
ds.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
spark.udf.register("strLength",(str: String) => str.length())
ds.createOrReplaceTempView("employees")
spark.sql("select name,salary,strLength(name) as name_Length from employees").show()
// +-------+------+-----------+
// | name|salary|name_Length|
// +-------+------+-----------+
// |Michael| 3000| 7|
// | Andy| 4500| 4|
// | Justin| 3500| 6|
// | Berta| 4000| 5|
// +-------+------+-----------+
spark.stop()
}
}
UDF (字段转成大写)
- 对数据集中,每行数据的特定字段,计算字符长度
- 通过 dataSet.withColumn 调用column
- Column通过udf函数转换
import com.opensource.bigdata.spark.standalone.base.BaseSparkSession
/**
* 自定义匿名函数
* 功能: 得到某列数据长度的函数
*/
object Run extends BaseSparkSession{
def main(args: Array[String]): Unit = {
val spark = sparkSession(true)
val ds = spark.read.json("hdfs://standalone.com:9000/home/liuwen/data/employees.json")
ds.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
import org.apache.spark.sql.functions._
val strUpper = udf((str: String) => str.toUpperCase())
import spark.implicits._
ds.withColumn("toUpperCase", strUpper($"name")).show
// +-------+------+-----------+
// | name|salary|toUpperCase|
// +-------+------+-----------+
// |Michael| 3000| MICHAEL|
// | Andy| 4500| ANDY|
// | Justin| 3500| JUSTIN|
// | Berta| 4000| BERTA|
// +-------+------+-----------+
spark.stop()
}
}
UDAF
- UDAF(user-defined aggregate function, 用户定义的聚合函数
- 同时处理多行,并且返回一个结果,通常结合使用 GROUP BY 语句(例如 COUNT 或 SUM)
count
- 统计一共有多少行数据
package com.opensource.bigdata.spark.sql.n_08_spark_udaf.n_01_spark_udaf_count
import com.opensource.bigdata.spark.standalone.base.BaseSparkSession
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
/**
* ).initialize()方法,初使使,即没数据时的值
* ).update() 方法把每一行的数据进行计算,放到缓冲对象中
* ).merge() 把每个分区,缓冲对象进行合并
* ).evaluate()计算结果表达式,把缓冲对象中的数据进行最终计算
*/
object Run2 extends BaseSparkSession{
object CustomerCount extends UserDefinedAggregateFunction{
//聚合函数的输入参数数据类型
def inputSchema: StructType = {
StructType(StructField("inputColumn",StringType) :: Nil)
}
//中间缓存的数据类型
def bufferSchema: StructType = {
StructType(StructField("sum",LongType) :: Nil)
}
//最终输出结果的数据类型
def dataType: DataType = LongType
def deterministic: Boolean = true
//初始值,要是DataSet没有数据,就返回该值
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
}
/**
*
* @param buffer 相当于把当前分区的,每行数据都需要进行计算,计算的结果保存到buffer中
* @param input
*/
def update(buffer: MutableAggregationBuffer, input: Row): Unit ={
if(!input.isNullAt(0)){
buffer(0) = buffer.getLong(0) + 1
}
}
/**
* 相当于把每个分区的数据进行汇总
* @param buffer1 分区一的数据
* @param buffer2 分区二的数据
*/
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit={
buffer1(0) = buffer1.getLong(0) +buffer2.getLong(0) // salary
}
//计算最终的结果
def evaluate(buffer: Row): Long = buffer.getLong(0)
}
def main(args: Array[String]): Unit = {
val spark = sparkSession(true)
spark.udf.register("customerCount",CustomerCount)
val df = spark.read.json("hdfs://standalone.com:9000/home/liuwen/data/employees.json")
df.createOrReplaceTempView("employees")
val sqlDF = spark.sql("select customerCount(name) as average_salary from employees ")
df.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
sqlDF.show()
// +--------------+
// |average_salary|
// +--------------+
// | 4.0|
// +--------------+
spark.stop()
}
}
max
- 统计收入最高的
package com.opensource.bigdata.spark.sql.n_08_spark_udaf.n_03_spark_udaf_sum
import com.opensource.bigdata.spark.standalone.base.BaseSparkSession
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
/**
* ).initialize()方法,初使使,即没数据时的值
* ).update() 方法把每一行的数据进行计算,放到缓冲对象中
* ).merge() 把每个分区,缓冲对象进行合并
* ).evaluate()计算结果表达式,把缓冲对象中的数据进行最终计算
*/
object Run extends BaseSparkSession{
object CustomerSum extends UserDefinedAggregateFunction{
//聚合函数的输入参数数据类型
def inputSchema: StructType = {
StructType(StructField("inputColumn",LongType) :: Nil)
}
//中间缓存的数据类型
def bufferSchema: StructType = {
StructType(StructField("sum",LongType) :: StructField("count",LongType) :: Nil)
}
//最终输出结果的数据类型
def dataType: DataType = LongType
def deterministic: Boolean = true
//初始值,要是DataSet没有数据,就返回该值
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
}
/**
*
* @param buffer 相当于把当前分区的,每行数据都需要进行计算,计算的结果保存到buffer中
* @param input
*/
def update(buffer: MutableAggregationBuffer, input: Row): Unit ={
if(!input.isNullAt(0)){
buffer(0) = buffer.getLong(0) + input.getLong(0)
}
}
/**
* 相当于把每个分区的数据进行汇总
* @param buffer1 分区一的数据
* @param buffer2 分区二的数据
*/
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit={
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
}
//计算最终的结果
def evaluate(buffer: Row): Long = buffer.getLong(0)
}
def main(args: Array[String]): Unit = {
val spark = sparkSession(true)
spark.udf.register("customerSum",CustomerSum)
val df = spark.read.json("hdfs://standalone.com:9000/home/liuwen/data/employees.json")
df.createOrReplaceTempView("employees")
val sqlDF = spark.sql("select customerSum(salary) as average_salary from employees ")
df.show
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
sqlDF.show()
// +--------------+
// |average_salary|
// +--------------+
// | 15000|
// +--------------+
spark.stop()
}
}
average
- 统计平均收入水平
package com.opensource.bigdata.spark.sql.n_08_spark_udaf.n_04_spark_udaf_average
import com.opensource.bigdata.spark.standalone.base.BaseSparkSession
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
object Run extends BaseSparkSession{
object MyAverage extends UserDefinedAggregateFunction{
//聚合函数的输入参数数据类型
def inputSchema: StructType = {
StructType(StructField("inputColumn",LongType) :: Nil)
}
//中间缓存的数据类型
def bufferSchema: StructType = {
StructType(StructField("sum",LongType) :: StructField("count",LongType) :: Nil)
}
//最终输出结果的数据类型
def dataType: DataType = DoubleType
def deterministic: Boolean = true
//初始值,要是DataSet没有数据,就返回该值
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
buffer(1) = 0L
}
/**
*
* @param buffer 相当于把当前分区的,每行数据都需要进行计算,计算的结果保存到buffer中
* @param input
*/
def update(buffer: MutableAggregationBuffer, input: Row): Unit ={
if(!input.isNullAt(0)){
buffer(0) = buffer.getLong(0) + input.getLong(0) // salary
buffer(1) = buffer.getLong(1) + 1 // count
}
}
/**
* 相当于把每个分区的数据进行汇总
* @param buffer1 分区一的数据
* @param buffer2 分区二的数据
*/
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit={
buffer1(0) = buffer1.getLong(0) +buffer2.getLong(0) // salary
buffer1(1) = buffer1.getLong(1) +buffer2.getLong(1) // count
}
//计算最终的结果
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}
def main(args: Array[String]): Unit = {
val spark = sparkSession(true)
spark.udf.register("MyAverage",MyAverage)
val df = spark.read.json("hdfs://standalone.com:9000/home/liuwen/data/employees.json")
df.createOrReplaceTempView("employees")
val sqlDF = spark.sql("select MyAverage(salary) as average_salary from employees ")
sqlDF.show()
spark.stop()
}
}
group by max
- 按性别分组统计收入最高是多少
- 即统计男,女,各收入最高是多少
package com.opensource.bigdata.spark.sql.n_08_spark_udaf.n_05_spark_udaf_groupby_max
import com.opensource.bigdata.spark.standalone.base.BaseSparkSession
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
/**
* ).initialize()方法,初使使,即没数据时的值
* ).update() 方法把每一行的数据进行计算,放到缓冲对象中
* ).merge() 把每个分区,缓冲对象进行合并
* ).evaluate()计算结果表达式,把缓冲对象中的数据进行最终计算
*/
object Run extends BaseSparkSession{
object CustomerMax extends UserDefinedAggregateFunction{
//聚合函数的输入参数数据类型
def inputSchema: StructType = {
StructType(StructField("inputColumn",LongType) :: Nil)
}
//中间缓存的数据类型
def bufferSchema: StructType = {
StructType(StructField("sum",LongType) :: StructField("count",LongType) :: Nil)
}
//最终输出结果的数据类型
def dataType: DataType = LongType
def deterministic: Boolean = true
//初始值,要是DataSet没有数据,就返回该值
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
}
/**
*
* @param buffer 相当于把当前分区的,每行数据都需要进行计算,计算的结果保存到buffer中
* @param input
*/
def update(buffer: MutableAggregationBuffer, input: Row): Unit ={
if(!input.isNullAt(0)){
if(input.getLong(0) > buffer.getLong(0)){
buffer(0) = input.getLong(0)
}
}
}
/**
* 相当于把每个分区的数据进行汇总
* @param buffer1 分区一的数据
* @param buffer2 分区二的数据
*/
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit={
if( buffer2.getLong(0) > buffer1.getLong(0)) buffer1(0) = buffer2.getLong(0)
}
//计算最终的结果
def evaluate(buffer: Row): Long = buffer.getLong(0)
}
def main(args: Array[String]): Unit = {
val spark = sparkSession(true)
spark.udf.register("customerMax",CustomerMax)
val df = spark.read.json("hdfs://standalone.com:9000/home/liuwen/data/employeesCN.json")
df.createOrReplaceTempView("employees")
val sqlDF = spark.sql("select gender,customerMax(salary) as average_salary from employees group by gender ")
df.show
// +------+----+------+
// |gender|name|salary|
// +------+----+------+
// | 男|小王| 30000|
// | 女|小丽| 50000|
// | 男|小军| 80000|
// | 女|小李| 90000|
// +------+----+------+
sqlDF.show()
// +------+--------------+
// |gender|average_salary|
// +------+--------------+
// | 男| 80000|
// | 女| 90000|
// +------+--------------+
spark.stop()
}
}
其它支持
- Spark SQL 支持集成现有 Hive 中的 UDF ,UDAF 和 UDTF 的(Java或Scala)实现。
- UDTFs(user-defined table functions, 用户定义的表函数)可以返回多列和多行end