题意:求高次方程的解及其个数。其中
1°
我们知道,高次方程是没有求根公式的。但是利用逆向思维,我们可以进行“试根法”,因为题目中给出了所求根的范围。但是多项式系数过于吓人,达到了sxbk的1e10000.longlong显然盛不下。只能看做字符串处理。然而即使是处理成字符串,我们也不可能真的去乘这么多。
2°
考虑取膜。我们把多项式系数进行取膜,它的相对效果和不取膜是一样的。(想一想,为什么)
除了对系数取膜,我们还可以考虑对x取膜。
3°
难道在x比较小的时候,我们计算这个多项式的值也需要暴力搞嘛?
我们智慧的先人秦九韶早就计算了一种计算多项式的简化方法,复杂度O(n)
(你可以在高中数学必修3中学到它)
它大概长这样:
它的代码大概长这样:
bool check(int x,int mo)
{
ll num=;
for(int i=n+;i>=;i--)
num=(num*x+a[i][mo])%prime[mo];
return num==;
}
于是我们就可以 快速求解多项式的值了。
至此,本题就结束了=w=。
复杂度O(TMN),T为选取模数的个数。
Code
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll; int n,m,ans;
char op[];
int a[][];
bool vis[];
int prime[]={,,,,,}; void read(int pos)
{
bool flag=;
int st=;
scanf("%s",op+);
if(op[]=='-') flag=,st=;
else st=;
for(int i=st;i<=strlen(op+);i++)
for(int j=;j<=;j++)
a[pos][j]=(a[pos][j]*+op[i]-'')%prime[j];
if(flag)
for(int j=;j<=;j++)
a[pos][j]=(prime[j]-a[pos][j])%prime[j];
} bool check(int x,int mo)
{
ll num=;
for(int i=n+;i>=;i--)
num=(num*x+a[i][mo])%prime[mo];
return num==;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n+;i++) read(i);
for(int j=;j<=;j++)
{
int limit=min(prime[j]-,m);
for(int i=;i<=limit;i++)
if(!check(i,j))
for(int k=i;k<=m;k+=prime[j])
vis[k]=;
}
for(int i=;i<=m;i++)
if(!vis[i]) ans++;
if(!ans){printf("");return ;}
else printf("%d\n",ans);
for(int i=;i<=m;i++)
if(!vis[i]) printf("%d\n",i);
return ;
}
* 开始交的时候脑子抽了以为1e6是100000于是愉快地RE了三个点233