本代码使用VLFeat库中的函数对一幅图像进行了SIFT检测
需要事先配置好VLFeat和OpenCV,VLFeat的配置参考前一篇博文,OpenCV的配置网上一大堆,自己去百度
#include "stdafx.h"
#include <stdio.h>
#include <tchar.h>
#include <opencv2/opencv.hpp>
#include <stdio.h> using namespace cv;
using namespace std; extern "C"{
#include <vl/generic.h>
#include <vl/stringop.h>
#include <vl/sift.h>
#include <vl/getopt_long.h>
}; int _tmain(int argc, _TCHAR* argv[])
{
// 注意此处一定是0,不能不填,因为是单通道,灰度空间
IplImage* img = cvLoadImage("1.jpg", ); // 此处这三个变量的定义看下面vl_sift_new函数中的解释
int noctaves = , nlevels = , o_min = ; // vl_sift_pix 就是float型数据
vl_sift_pix *imgdata = new vl_sift_pix[img->height * img->width]; // 将原图像复制到float型的vl_sift_pix数组中
unsigned char *Pixel;
for (int i=;i<img->height;i++)
{
for (int j=;j<img->width;j++)
{
Pixel=(unsigned char*)(img->imageData+i*img->width+j);
imgdata[i*img->width+j]=*(Pixel);
}
} // VlSiftFilt: This filter implements the SIFT detector and descriptor.
// 这个过滤器实现了SIFT检测器和描述符
VlSiftFilt *siftfilt = NULL; // vl_sift_new(int width, int height, int noctaves, int nlevels, int o_min)
// noctaves: numbers of octaves 组数
// nlevels: numbers of levels per octave 每组的层数
// o_min: first octave index 第一组的索引号
siftfilt = vl_sift_new(img->width, img->height, noctaves, nlevels, o_min); float Descri[][]; //记录每个特征点的描述符,一个特征点有可能有多个描述符,最多有4个
int area[][]; //0~3分别记录每个特征点的坐标x,y,圆的半径大小r,该特征点的方向个数,或者说描述符个数 int keypoint = ;
int idx_point = ; //特征点的个数
int idx_descri = ; //特征点描述符的个数 >= idx_point // vl_sift_process_first_octave:
// The function starts processing a new image by computing its Gaussian scale space at the lower octave.
// It also empties the internal keypoint buffer.
// 这个函数开始处理一幅新图像,通过计算它在低层的高斯尺度空间
// 它还清空内部记录关键点的缓冲区
if (vl_sift_process_first_octave(siftfilt, imgdata) != VL_ERR_EOF)
{
while ()
{
// 计算每组中的关键点
vl_sift_detect(siftfilt); // 遍历每个特征点
keypoint += siftfilt->nkeys; VlSiftKeypoint *pkeypoint = siftfilt->keys; for (int i = ; i < siftfilt->nkeys; i ++)
{
VlSiftKeypoint tempkeypoint = *pkeypoint;
pkeypoint++; area[idx_point][] = tempkeypoint.x;
area[idx_point][] = tempkeypoint.y;
area[idx_point][] = tempkeypoint.sigma/; // 计算并遍历每个点的方向
double angles[]; // The function computes the orientation(s) of the keypoint k.
// The function returns the number of orientations found (up to four).
// The orientations themselves are written to the vector angles.
// 计算每个极值点的方向,包括主方向和辅方向,最多4个方向
int angleCount = vl_sift_calc_keypoint_orientations(siftfilt, angles, &tempkeypoint); area[idx_point][] = angleCount;
idx_point ++; for (int j = ; j < angleCount; ++ j)
{
printf("%d: %f\n", j, angles[j]); // 计算每个方向的描述符
float *descriptors = new float[];
vl_sift_calc_keypoint_descriptor(siftfilt, descriptors, &tempkeypoint, angles[j]); memcpy(Descri[idx_descri], descriptors, * sizeof(float));
idx_descri ++; delete []descriptors;
descriptors = NULL;
} } // vl_sift_process_next_octave:
// The function computes the next octave of the Gaussian scale space.
// Notice that this clears the record of any feature detected in the previous octave.
// 这个函数计算高斯尺度空间中的下一组尺度空间图像
// 这个函数会清除在前一层空间中检测到的特征点
if (vl_sift_process_next_octave(siftfilt) == VL_ERR_EOF)
{
break;
} keypoint = ;
}
} vl_sift_delete(siftfilt);
delete []imgdata;
imgdata = NULL; for (int i = ; i < idx_point; ++ i)
{
cvDrawCircle(img, cvPoint(area[i][], area[i][]), area[i][], CV_RGB(,,));
} cvNamedWindow("Source Image", );
cvShowImage("Source Image", img);
cvWaitKey();
cvReleaseImage(&img);
cvDestroyAllWindows(); return ;
}