一、over(partition by ......)主要和聚合函数sum()、count()、avg()等结合使用,实现分组聚合的功能
示列:根据day_id日期和mac_id机器码进行聚合分组求每一天的该机器的销量和即sum_num,hive sql语句:select day_id,mac_id,mac_color,day_num,sum(day_num)over(partition by day_id,mac_id order by day_id) sum_num from test_temp_mac_id;
注:day_id,mac_id,mac_color,day_num为查询原有数据,sum_num为计算结果
day_id | mac_id | mac_color | day_num | sum_num |
20171011 | 1292 | 金色 | 1 | 89 |
20171011 | 1292 | 金色 | 14 | 89 |
20171011 | 1292 | 金色 | 2 | 89 |
20171011 | 1292 | 金色 | 11 | 89 |
20171011 | 1292 | 黑色 | 2 | 89 |
20171011 | 1292 | 粉金 | 58 | 89 |
20171011 | 1292 | 金色 | 1 | 89 |
20171011 | 2013 | 金色 | 10 | 22 |
20171011 | 2013 | 金色 | 9 | 22 |
20171011 | 2013 | 金色 | 2 | 22 |
20171011 | 2013 | 金色 | 1 | 22 |
20171012 | 1292 | 金色 | 5 | 18 |
20171012 | 1292 | 金色 | 7 | 18 |
20171012 | 1292 | 金色 | 5 | 18 |
20171012 | 1292 | 粉金 | 1 | 18 |
20171012 | 2013 | 粉金 | 1 | 7 |
20171012 | 2013 | 金色 | 6 | 7 |
20171013 | 1292 | 黑色 | 1 | 1 |
20171013 | 2013 | 粉金 | 2 | 2 |
20171011 | 12460 | 茶花金 | 1 | 1 |
二、over(partition by ......)与group by 区别
如果用group by实现一中根据day_id日期和mac_id机器码进行聚合分组求每一天的该机器的销量和即sum_num,
则hive sql语句为:select day_id,mac_id,sum(day_num) sum_num from test_temp_mac_id group by day_id,mac_id order by day_id;结果如下表
注:我们可以观察到group by可以实现同样的分组聚合功能,但sql语句不能写与分组聚合无关的字段,否则会报错,即group by 与over(partition by ......)主要区别为,带上group by的hive sql语句只能显示与分组聚合相关的字段,而带上over(partition by ......)的hive sql语句能显示所有字段.。
day_id | mac_id | sum_num |
20171011 | 124609 | 1 |
20171011 | 20130 | 22 |
20171011 | 12922 | 89 |
20171012 | 12922 | 18 |
20171012 | 20130 | 7 |
20171013 | 12922 | 1 |
20171013 | 20130 | 2 |
https://blog.csdn.net/qq_37325859/article/details/78222712