题解:
首先观察数据范围,n <= 18,很明显是状压DP。所以设f[i]表示状态为i时的最小代价。然后考虑转移。
注意到出发点(0, 0)已经被固定,因此只需要2点就可以确定一条抛物线,所以每次转移时枚举是哪两只猪确定了这条抛物线,然后由于一条抛物线可能会恰好打中别的猪,所以再枚举判断一下哪些猪会被打中,然后就获得了一个后续状态,直接转移即可。
但是这样是$2^nn^3T$的复杂度,显然过不去,因此考虑优化。
1,因为一旦确定抛物线的2只猪确定了,这条抛物线会经过哪些其他的猪也就确定了,所以我们可以预处理出g[i][j],表示用第i和第j只猪确定抛物线时总共可以打到哪些猪。
2,因为观察到对于2条抛物线,先发射哪条不影响答案,同理,因为所有猪都必须被打,所以那只猪先被打掉也不影响答案,所以每次转移时只打状态中第一个没被打的猪,然后就可以break进入下一个状态了。因为这次没打的猪,下次还是会打掉的,因此不影响正确性。
于是复杂度$2^nnT$
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define eps 1e-9
#define AC 20
#define ac 300000
#define ld long double int T, n, m, maxn;
int f[ac], g[AC][AC];
struct node{
ld x, y;
}pig[AC], func; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} node cal(node x, node y)//计算解析式
{
ld a, b;
a = (x.y * y.x - y.y * x.x) / (x.x * x.x * y.x - y.x * y.x * x.x);
b = x.y / x.x - a * x.x;
return (node){a, b};
} inline void upmin(int &a, int b)
{
if(b < a) a = b;
} bool check(node ff, node x)//计算一个点是否过解析式
{
ld a = ff.x, b = ff.y;
return (fabs(x.y - (a * x.x * x.x + b * x.x)) <= eps);
} void pre()
{
int x = , tmp;
n = read(), m = read();
maxn = ( << n) - ;
memset(g, , sizeof(g));
memset(f, , sizeof(f));
f[] = ;
for(R i = ; i <= n; i ++)
scanf("%Lf%Lf", &pig[i].x, &pig[i].y);
for(R i = ; i <= n; i ++, x <<= )
{
int now = ;
for(R j = ; j <= n; j ++, now <<= )
{
if(i == j) {g[i][j] = x; continue;}
tmp = x | now; func = cal(pig[i], pig[j]);
if(func.x >= ) {g[i][j] = ; continue;}//不合法
int t = ;
for(R k = ; k <= n; k ++, t <<= )
{
if(k == i || k == j) continue;
if(!check(func, pig[k])) continue;
tmp |= t;
}
g[i][j] = tmp;
}
}
} void get()
{
for(R i = ; i <= maxn; i ++)
{
int x = ;
for(R j = ; j <= n; j ++, x <<= )
{
if(i & x) continue;
for(R k = ; k <= n; k ++)
upmin(f[i | g[j][k]], f[i] + );
break;
}
}
printf("%d\n", f[maxn]);
} void work()
{
T = read();
while(T --)
pre(), get();
} int main()
{
// freopen("in.in", "r", stdin);
work();
// fclose(stdin);
return ;
}