起因
Django
作为 Python
著名的Web
框架,相信很多人都在用,自己工作中也有项目项目在用,而在最近几天的使用中发现,部署Django
程序的服务器出现了内存问题,现象就是运行一段时间之后,内存占用非常高,最终会把服务器的内存耗尽,对于Python
项目出现内存问题,自己之前处理过一次,所以并没有第一次解决时的慌张,自己之前把解决方法也整理了博客:https://www.cnblogs.com/zhaof/p/10031945.html
但是事情似乎并没有我想的那么简单,自己尝试用之前的的方法tracemalloc
库进行问题的排查,但是问题来了实际的项目中有快一百多个接口,怎么排查?难道一个一个接口进行测试排查,但是时间又比较紧急,可能又来不及了。对比上次自己解决是因为上次的项目比较简单,相对来说定位问题比较容易,那么这次怎么处理呢?
处理过程
一般Python
项目其实是很少出现内存问题的,一般都是自己代码写的有问题导致的,而对于这次出现的问题,自己的排查思路(对于web 接口类型的项目):
- 先排查调用比较频繁的接口
- 然后排查数据汇总接口(查询比较复杂)
- 如果上述还没有查出来,再排查剩余的接口
在这次的问题排查中,自己大致也是按照这个思路进行的,在对调用频繁的接口进行排查时,并没有发现内存的异常,而出现内存的问题则是在数据汇总的相关接口上。
其实这种接口对于初级开发可能是容易出问题的地方,首先这种接口查询的数据相对其他接口会比较复杂,如果编码基础又不是特别好,可能就会在这些接口上出现bug.
而在这次的排查中,最终确定是在一个汇总数据的接口上,定位到问题处在了Django ORM
使用不当导致的。自己通过一个简单代码实例来说明:
class Student(models.Model):
name = models.CharField(max_length=20)
name2 = models.CharField(max_length=20)
name3 = models.CharField(max_length=20)
name4 = models.CharField(max_length=20)
name5 = models.CharField(max_length=20)
name6 = models.CharField(max_length=20)
name7 = models.CharField(max_length=20)
name8 = models.CharField(max_length=20)
name9 = models.CharField(max_length=20)
name10 = models.CharField(max_length=20)
name11 = models.CharField(max_length=20)
name12 = models.CharField(max_length=20)
name13 = models.CharField(max_length=20)
name14 = models.CharField(max_length=20)
name15 = models.CharField(max_length=20)
age = models.IntegerField(default=0)
正常情况,我们的表字段会比较多,这里就通过多个name来模拟,出现题的代码就出在关于这个表的接口上:
def index(request):
studets = Student.objects.filter(age__gt=20)
if studets:
pass
return HttpResponse("test memory")
为了让内存问题容易复现,我通过脚本向Student中插入了20000条数据,当然这里数据越多,问题越明显
通过一个测试脚本并发请求这个接口,观察内存情况,你会发现,内存会出现瞬间上涨的情况,并且如果你的数据越多,请求越多,你的内存可能会在一段时间居高不下,并且逐渐上涨。问题出在哪里了?
其实很简单,问题出在了代码中的if 判断那里,我们通过filter 查询返回的是QuerySet 类型的数据,而我们过滤之后的数据可能会存在非常多的时候,这个时候我们通过if 直接判断,自己的理解这个地方会将整个QuerySet加载到内存中,从而出现内存占用过高的问题,而如果并且这个时候这个接口的响应速度也是非常会变慢,而这个QuerySet 中的数据越多,内存占用越明显。
在Django
的文档中其实做了说明
所以对于我们的代码我们只需要把if 判断地方改成if not studets.exists()
就可以解决问题。
这是一个很小的知识点,但是如果使用不对,可能就会造成非常严重的内存问题。
总结
- 除了单元测试,还需要做大数据量测试,这次的问题如果在测试的时候做过一定数据量的测试,可能很早就能及时发现问题
- 对于基础的库的使用要更加熟悉
- 排查问题的思路要明确,不然可能会无从下手