2763: [JLOI2011]飞行路线
Time Limit: 10 Sec Memory Limit: 128 MB
Description
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?
Input
数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0<=s,t<n)
接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。(0<=a,b<n,a与b不相等,0<=c<=1000)
Output
只有一行,包含一个整数,为最少花费。
Sample Input
5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
Sample Output
8
HINT
对于30%的数据,2<=n<=50,1<=m<=300,k=0;
对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;
对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.
Source
将图拆成 k+1 层,第 i 层代表已用了 i 次免费的情况,每层内正常建图,并对于每条线路的两点,从上一层向下一层建一条权值为零的单向边,表示该条线路选择免费,这样保证不可返回上一层,且最多只能走 k 次。
然后直接跑dijkstra
当然这种方法固然可以过,但当 k 值变大又卡内存时,我们就需要另一种建图方式 http://www.cnblogs.com/lkhll/p/6616146.html
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1200010
#define M 2400010
#define pa pair<int,int>
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int cnt,lj[N],fro[M],to[M],v[M];
inline void add(int a,int b,int c){fro[++cnt]=lj[a];to[cnt]=b;v[cnt]=c;lj[a]=cnt;}
int n,m,k,s,t,a,b,c;
int dis[N];
bool vs[N];
void dijkstra()
{
priority_queue<pa,vector<pa>,greater<pa> >q;
memset(dis,,sizeof(dis));
dis[s]=;
int u,et;
q.push(make_pair(,s));
while(!q.empty())
{
u=q.top().second;q.pop();
if(vs[u]) continue;
vs[u]=;
for(int i=lj[u];i;i=fro[i])
{
et=to[i];
if(dis[et]>dis[u]+v[i])
{
dis[et]=dis[u]+v[i];
q.push(make_pair(dis[et],et));
}
}
}
}
int ans=2e9+;
int main()
{
n=read();m=read();k=read();
s=read()+;t=read()+;
for(int i=;i<=m;i++)
{
a=read()+;b=read()+;c=read();
for(int j=;j<=k;j++)
{
add(a+j*n,b+j*n,c);
add(b+j*n,a+j*n,c);
if(j!=k)
{
add(a+j*n,b+(j+)*n,);
add(b+j*n,a+(j+)*n,);
}
}
}
dijkstra();
for(int i=;i<=k;i++) ans=min(ans,dis[t+i*n]);
printf("%d\n",ans);
return ;
}