这题其实可以cdq分治做,但是如果强制在线的话,这里有个牛逼方法叫二进制分组。
它的基本思想是把修改操作按二进制分组,遇到修改就在尾部加一个,并与之前的合并,比如之前有23(16+4+2+1)个,加了一个后就变成了24(16+8)个,遇到查询就在每个组内查询,再加起来就好了。
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
#define M ((l+r)>>1)
#define mk(a,b) make_pair(a,b) typedef pair<int,int> pr;
const int N=,A=N+;
char op[];
int n,q,x,y,tt,tp,a[N],rt[][],rb[],vs[];
vector<pr> v[];
struct nd {int l,r,s;}t[]; void ins2(int &x,int ls,int l,int r,int v) {
t[x=rb[tt--]].s=t[ls].s+,vs[x]=;
if(l==r) return;
if(v<=M) t[x].r=t[ls].r,ins2(t[x].l,t[ls].l,l,M,v);
else t[x].l=t[ls].l,ins2(t[x].r,t[ls].r,M+,r,v);
}
int qr2(int x,int y,int l,int r,int L,int R) {
if(L<=l&&R>=r) return t[x].s-t[y].s;
if(R<=M) return qr2(t[x].l,t[y].l,l,M,L,R);
if(L>M) return qr2(t[x].r,t[y].r,M+,r,L,R);
return qr2(t[x].l,t[y].l,l,M,L,R)+qr2(t[x].r,t[y].r,M+,r,L,R);
}
void dl(int x,int l,int r) {
if(vs[x]) return;
rb[++tt]=x,vs[x]=,dl(t[x].l,l,M),dl(t[x].r,M+,r),t[x].s=t[x].l=t[x].r=;
} void ins(int x,int y) {
v[++tp].push_back(mk(x,y)),ins2(rt[tp][],rt[tp][],,A,y);
while(tp>&&v[tp-].size()==v[tp].size()) {
int t1=,t2=; vector<pr> t;
for(int i=;i<=v[tp-].size();i++) dl(rt[tp-][i],,A);
for(int i=;i<=v[tp].size();i++) dl(rt[tp][i],,A);
while(t1<v[tp-].size()||t2<v[tp].size()) {
if(t1<v[tp-].size()&&(t2==v[tp].size()||v[tp-][t1]<v[tp][t2]))
t.push_back(v[tp-][t1++]),ins2(rt[tp-][t1+t2],rt[tp-][t1+t2-],,A,v[tp-][t1-].second);
else t.push_back(v[tp][t2++]),ins2(rt[tp-][t1+t2],rt[tp-][t1+t2-],,A,v[tp][t2-].second);
}
v[tp-]=t,v[tp].clear(),tp--;
}
}
int qr(int x,int y,int k3) {
int r=;
for(int i=;i<=tp;i++) {
int k=lower_bound(v[i].begin(),v[i].end(),mk(x+k3,0x3f3f3f3f))-v[i].begin();
int k2=lower_bound(v[i].begin(),v[i].end(),mk(x-k3,))-v[i].begin();
r+=qr2(rt[i][k],rt[i][k2],,A,max(,y-k3),min(y+k3,A));
}
return r;
} int main() {
scanf("%d%d",&n,&q),vs[]=;
for(int i=;i<;i++) rb[++tt]=i,vs[i]=;
for(int i=;i<=n;i++) scanf("%d",&a[i]),ins(a[i]+i,a[i]-i+N);
while(q--) {
scanf("%s%d%d",op,&x,&y);
if(op[]=='Q') printf("%d\n",qr(a[x]+x,a[x]-x+N,y));
else a[x]=y,ins(y+x,y-x+N);
}
return ;
}