面试55题:
题目:二叉树的深度
题:输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
解题思路:
①如果一棵树只有一个节点,它的深度为1
②如果根节点只有左子树而没有右子树,那么树的深度是左子树的深度加1
同样,如果根节点只有右子树而没有左子树,那么树的深度是右子树的深度加1
既有右子树又有左子树时,数的深度是左子树和右子树深度较大者加1
利用递归很容易实现上述思路:
解题代码:
# -*- coding:utf-8 -*-
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def TreeDepth(self, pRoot):
# write code here
if pRoot is None:
return 0
left = self.TreeDepth(pRoot.left)
right = self.TreeDepth(pRoot.right)
return max(left,right)+1
题目拓展:平衡二叉树
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
解题代码:
# -*- coding:utf-8 -*-
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def TreeDepth(self, pRoot):
if pRoot is None:
return 0
left = self.TreeDepth(pRoot.left)
right = self.TreeDepth(pRoot.right)
return max(left,right)+1 def IsBalanced_Solution(self, pRoot):
# write code here
if pRoot is None:
return True
left = self.TreeDepth(pRoot.left)
right = self.TreeDepth(pRoot.right)
diff = left - right
if diff< -1 or diff >1:
return False
return self.IsBalanced_Solution(pRoot.left) and self.IsBalanced_Solution(pRoot.right)