转自蜗窝科技:http://www.wowotech.net/pm_subsystem/regulator_framework_overview.html

1. 前言

Regulator,中文名翻译为“稳定器”,在电子工程中,是voltage regulator(稳压器)或者current regulator(稳流器)的简称,指可以自动维持恒定电压(或电流)的装置。

voltage regulator最早应用于功放电路中,主要用于滤除电源纹波(100或者120Hz)和噪声,以及避免“输出电压随负载的变化而变化”的情况。后来,随着IC级别的regulator的出现(便宜了),voltage regulator几乎存在于任何的电子设备中。例如我们常见的嵌入式设备中,基本上每一种电压,都是经过regulator输出的。

相比较voltage regulator的广泛使用,很少见到current regulator的应用场景(相信大多数的嵌入式工程师都没有接触过)。它一般存在于电流源中,除此之外,它广泛存在于近年来新兴的LED照明设备中。current regulator在LED设备中的作用主要有两个:避免驱动电流超出最大额定值,影响其可靠性;获得预期的亮度要求,并保证各个LED亮度、色度的一致性。

虽然原理比较复杂,但从设备驱动的角度看,regulator的控制应该很简单,就是输出的enable/disable、输出电压或电流的大小的控制。那么,linux kernel的regulator framework到底要做什么呢?这就是本文的目的:弄清楚regulator framework背后思考,并总结出其软件架构(和common clock framework类似,consumer/provider/core)。

注1:有关regulator的描述,参考自“http://sound.westhost.com/articles/vi-regulators.html”。

注2:kernel中有关regulator framework的介绍写的相当好(Documentation\power\regulator\*),因此本文大部分内容会参考这些文件。

2. 背后的思考

Linux regulator framework的目的很直接:提供标准的内核接口,控制系统的voltage/current regulators,并提供相应的机制,在系统运行的过程中,动态改变regulators的输出,以达到省电的目的。

看似简单的背后,有些因素不得不考虑。

1)最重要的,就是安全性:

2)系统中大部分的设备,都没有动态更改regulator配置的需求,甚至连enable/disable都懒得关心的,framework需要考虑这种情况,尽量简化接口。

3)会存在同一个regulator向多个设备提供power的情况,如果这些设备的需求不同怎么办?

4)regulator之间是否可以级联?如果可以,怎么处理?

这些思考最终都会反映到软件设计上,具体可参考如下的软件架构。

3. 软件架构

基于上面的思考,regulator framework的软件架构如下:

Linux regulator framework(1) - 概述【转】-LMLPHP

除了machine之外,基本上和common clock framework的consumer/provider框架类似。

3.1 machine

 machine的主要功能,是使用软件语言(struct regulator_init_data),静态的描述regulator在板级的物理现状(硬件配置),包括:

1)前级regulator(即该regulator的输出是另一个regulator的输入,简称supply regulator)和后级regulator(即该regulator的输入是其它regulator的输出,简称consumer regulator)。

2)该regulator的物理限制(struct regulation_constraints),包括:

这些限制关系到系统安全,因此必须小心配置。配置完成后,在系统运行的整个过程中,它们都不会再改变了。

3.2 driver

driver模块的功能,是从regulator driver的角度,抽象regulator设备。

1)使用struct regulator_desc描述regulator的静态信息,包括:名字、supply regulator的名字、中断号、操作函数集(struct regulator_ops)、使用regmap时相应的寄存器即bitmap等等。

2)使用struct regulator_config,描述regulator的动态信息(所谓的动态信息,体现在struct regulator_config变量都是局部变量,因此不会永久保存),包括struct regulator_init_data指针、设备指针、enable gpio等等。

3)提供regulator的注册接口(regulator_register/devm_regulator_register),该接口接受描述该regulator的两个变量的指针:struct regulator_desc和struct regulator_config,并分配一个新的数据结构(struct regulator_dev,从设备的角度描述regulator),并把静态指针(struct regulator_desc)和动态指针(struct regulator_config)提供的信息保存在其中。

4)最后,regulator driver将以为struct regulator_dev指针为对象,对regulator进行后续的操作。

3.3 consumer

consumer可以理解为regulator提供服务的对象。比如LCD使用regulator管理自己,就必须使用regulator core提供的regulator相关接口函数。regulator_get()/regulator_put()函数。

3.4 core

core负责上述逻辑的具体实现,并以sysfs的形式,向用户空间提供接口。

4. 接口汇整

本节对regulator framework向各个层次提供的API做一个汇整,具体细节会在后续的文章中详细描述。

4.1 consumer模块向内核空间consumer提供的接口

regulator framework向内核空间consumer提供的接口位于“include/linux/regulator/consumer.h”中,包括regulator的获取、使能、修改等接口,如下。

1)struct regulator

struct regulator结构用于从consumer的角度抽象一个regulator,consumer不需要关心该结构的细节,当作一个句柄使用即可(类似struct clk)。

2)regulator的get/put接口

   : struct regulator *__must_check regulator_get(struct device *dev,
: const char *id);
: struct regulator *__must_check devm_regulator_get(struct device *dev,
: const char *id);
: struct regulator *__must_check regulator_get_exclusive(struct device *dev,
: const char *id);
: struct regulator *__must_check devm_regulator_get_exclusive(struct device *dev,
: const char *id);
: struct regulator *__must_check regulator_get_optional(struct device *dev,
: const char *id);
: struct regulator *__must_check devm_regulator_get_optional(struct device *dev,
: const char *id);
: void regulator_put(struct regulator *regulator);
: void devm_regulator_put(struct regulator *regulator);

根据是否独占regulator、是否可以多次get,regulator get接口分为三类:

正常的get,非独占、可以重复get,regulator_get/devm_regulator_get;

独占性质的get,独占、不可重复get,regulator_get_exclusive/devm_regulator_get_exclusive;

optional的get,非独占、不可重复get,regulator_get_optional/devm_regulator_get_optional。

get接口的参数为id,会在下一篇文章中详细介绍。

3)supply alias相关的接口

   : int regulator_register_supply_alias(struct device *dev, const char *id,
: struct device *alias_dev,
: const char *alias_id);
: void regulator_unregister_supply_alias(struct device *dev, const char *id);
:
: int devm_regulator_register_supply_alias(struct device *dev, const char *id,
: struct device *alias_dev,
: const char *alias_id);
: void devm_regulator_unregister_supply_alias(struct device *dev,
: const char *id);
:
: int devm_regulator_bulk_register_supply_alias(struct device *dev,
: const char *const *id,
: struct device *alias_dev,
: const char *const *alias_id,
: int num_id);
: void devm_regulator_bulk_unregister_supply_alias(struct device *dev,
: const char *const *id,
: int num_id); 

4)regulator的控制、状态获取接口

   : int __must_check regulator_enable(struct regulator *regulator);
: int regulator_disable(struct regulator *regulator);
: int regulator_force_disable(struct regulator *regulator);
: int regulator_is_enabled(struct regulator *regulator);
: int regulator_disable_deferred(struct regulator *regulator, int ms);
:
: int regulator_can_change_voltage(struct regulator *regulator);
: int regulator_count_voltages(struct regulator *regulator);
: int regulator_list_voltage(struct regulator *regulator, unsigned selector);
: int regulator_is_supported_voltage(struct regulator *regulator,
: int min_uV, int max_uV);
: unsigned int regulator_get_linear_step(struct regulator *regulator);
: int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV);
: int regulator_set_voltage_time(struct regulator *regulator,
: int old_uV, int new_uV);
: int regulator_get_voltage(struct regulator *regulator);
: int regulator_sync_voltage(struct regulator *regulator);
: int regulator_set_current_limit(struct regulator *regulator,
: int min_uA, int max_uA);
: int regulator_get_current_limit(struct regulator *regulator);
:
: int regulator_set_mode(struct regulator *regulator, unsigned int mode);
: unsigned int regulator_get_mode(struct regulator *regulator);
: int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
:
: int regulator_allow_bypass(struct regulator *regulator, bool allow);
:
: struct regmap *regulator_get_regmap(struct regulator *regulator);
: int regulator_get_hardware_vsel_register(struct regulator *regulator,
: unsigned *vsel_reg,
: unsigned *vsel_mask);
: int regulator_list_hardware_vsel(struct regulator *regulator,
: unsigned selector);
:

5)bulk型的操作(一次操作多个regulator)

   : int regulator_bulk_register_supply_alias(struct device *dev,
: const char *const *id,
: struct device *alias_dev,
: const char *const *alias_id,
: int num_id);
: void regulator_bulk_unregister_supply_alias(struct device *dev,
: const char * const *id, int num_id);
: int __must_check regulator_bulk_get(struct device *dev, int num_consumers,
: struct regulator_bulk_data *consumers);
: int __must_check devm_regulator_bulk_get(struct device *dev, int num_consumers,
: struct regulator_bulk_data *consumers);
: int __must_check regulator_bulk_enable(int num_consumers,
: struct regulator_bulk_data *consumers);
: int regulator_bulk_disable(int num_consumers,
: struct regulator_bulk_data *consumers);
: int regulator_bulk_force_disable(int num_consumers,
: struct regulator_bulk_data *consumers);
: void regulator_bulk_free(int num_consumers,
: struct regulator_bulk_data *consumers);

6)notifier相关的接口

   : int regulator_register_notifier(struct regulator *regulator,
: struct notifier_block *nb);
: int regulator_unregister_notifier(struct regulator *regulator,
: struct notifier_block *nb);

7)其它接口

   : /* driver data - core doesn't touch */
: void *regulator_get_drvdata(struct regulator *regulator);
: void regulator_set_drvdata(struct regulator *regulator, void *data);

4.2 consumer模块向用户空间consumer提供的接口

 用户空间程序可以通过sysfs接口,使用regulator,就像内核空间consumer一样。这些接口由“drivers/regulator/userspace-consumer.c”实现,主要包括:

4.3 machine模块向regulator driver提供的接口

 machine模块主要提供struct regulator_init_data、struct regulation_constraints constraints等数据结构,用于描述板级的regulator配置,具体可参考3.1中介绍。

4.4 driver模块向regulator driver提供的接口

regulator framework向regulator driver提供的接口位于“include/linux/regulator/driver.h”中,包括数据结构抽象、regulator注册等。

1)struct regulator_desc、struct regulator_config和struct regulator_dev

见3.2中的介绍。

2)regulator设备的注册接口

   : struct regulator_dev *
: regulator_register(const struct regulator_desc *regulator_desc,
: const struct regulator_config *config);
: struct regulator_dev *
: devm_regulator_register(struct device *dev,
: const struct regulator_desc *regulator_desc,
: const struct regulator_config *config);
: void regulator_unregister(struct regulator_dev *rdev);
: void devm_regulator_unregister(struct device *dev, struct regulator_dev *rdev);

见3.2中的介绍。

3)其它接口,请参考后续的文章。

4.5 core模块向用户空间提供的sysfs接口

regulator设备在内核中是以regulator class的形式存在的,regulator core通过class->dev_groups的方式,提供了一些默认的attribute,包括:

另外,如果regulator driver需要提供更多的attribute(如状态、最大/最小电压等等),可以调用add_regulator_attributes接口,主动添加。

5、FAQ

kobe.bao 
2016-03-07 20:48

Hi wowo:

关于电源管理,有个问题请教,是这样的(高通soc芯片):

需要regulator供电的外设,都会在其DTS中对regulator进行设置(暂且称之为regulator设置节点),例如:

qcom,ctrl-supply-entry@0 {

qcom,supply-name = "vdda";

qcom,supply-min-voltage = <1250000>;

qcom,supply-max-voltage = <1250000>;

...

};

驱动代码中会对该节点进行解析,利用regulator_get、regulator_count_voltages等API函数进行设置。

通常,外设的DTS中还有一个这样的节点,例如:

vdda-supply = <&pm8994_l2>

该节点的解释是“Phandle for vreg regulator device node”,暂且称为regulator设备节点。但是我在代码中并没有找到对该节点的解析,我想请问,regulator设备节点与regulator设置节点是怎么联系起来的?

wowo 
2016-03-07 22:39

@kobe.bao:qcom,supply-name = "xxx";

xxx-supply = <&pm8994_l2>

这里的xxx是“vdda”,就是这样联系起来的。

kobe.bao 
2016-03-08 18:52

@wowo:Hi wowo:

感谢回答。

我也猜到他们是这样联系起来的,但是在代码中我没有找到相关的部分,心里总觉得不踏实,能否指点下代码中是如何实现联系的?谢谢

wowo 
2016-03-08 21:20

@kobe.bao:关于regulator的supply,我在“http://www.wowotech.net/pm_subsystem/regulator_driver.html”中有提到,其实就是在regulator_register的时候,解析DTS中“supply-name”的值,然后调用regulator_dev_lookup接口,找到对应的struct regulator指针(就是“xxx-supply = <&pm8994_l2> ”所对应的指针)。
 
05-11 04:00