公司需要在项目中使用人脸识别SDK,并且对信息安全的要求非常高,在详细了解市场上几个主流人脸识别SDK后,综合来看虹软的Arcface SDK比较符合我们的需求,它提供了免费版本,并且可以在离线环境下使用,这一点非常符合我们对安全性的要求。
但有个遗憾的事情,我们的项目主要使用了Python语言,虹软官方并没有提供Python版本的SDK,因此我自己使用Python封装了Arcface C++ SDK,便于在项目中使用,这里将主要过程写出来供大家探讨下。
1. 环境说明
a. 注意Win64环境的Python必须使用ArcFace C++(Win64) SDK,如果平台不一致, 否则可能会出现以下错误。
点击(此处)折叠或打开
- OSError: [WinError 193] %1 不是有效的 Win32 应用程序
点击(此处)折叠或打开
- c_ubyte_p = POINTER(c_ubyte) memcpy = cdll.msvcrt.memcpy malloc = cdll.msvcrt.malloc malloc.restype = c_void_p free = cdll.msvcrt.free
在封装数据结构时,一定要注意参数类型,否则可能会导致程序出错。
点击(此处)折叠或打开
- class MRECT(Structure): # 人脸框
- _fields_ = [(u'left', c_int32),
- (u'top', c_int32),
- (u'right', c_int32),
- (u'bottom', c_int32)] class ASFVersion(Structure): # 版本信息 版本号 构建日期 版权说明
- _fields_ = [ ('Version', c_char_p),
- ('BuildDate', c_char_p),
- ('CopyRight', c_char_p)] class ASFSingleFaceInfo(Structure): # 单人脸信息 人脸框 人脸角度
- _fields_ = [ ('faceRect', MRECT),
- ('faceOrient', c_int32)] class ASFMultiFaceInfo(Structure): # 多人脸信息 人脸框数组 人脸角度数组 人脸数
- _fields_ = [ (u'faceRect', POINTER(MRECT)),
- (u'faceOrient', POINTER(c_int32)),
- (u'faceNum', c_int32)] class ASFFaceFeature(Structure): # 人脸特征 人脸特征 人脸特征长度
- _fields_ = [ ('feature', c_void_p),
- ('featureSize', c_int32)] class ASFFace3DAngle(Structure): # 人脸角度信息
- _fields_ = [ ('roll', c_void_p),
- ('yaw', c_void_p),
- ('pitch', c_void_p),
- ('status', c_void_p),
- ('num', c_int32)] class ASFAgeInfo(Structure): # 年龄
- _fields_ = [ (u'ageArray', c_void_p),
- (u'num', c_int32)] class ASFGenderInfo(Structure): # 性别
- _fields_ = [ (u'genderArray', c_void_p),
- (u'num', c_int32)] class ASFLivenessThreshold(Structure): # 活体阈值
- _fields_ = [ (u'thresholdmodel_BGR', c_float),
- (u'thresholdmodel_IR', c_int32)] class ASFLivenessInfo(Structure): # 活体信息
- _fields_ = [ (u'isLive', c_void_p),
- (u'num', c_int32)]
a. 接口封装之前需要加载dll库,Arcface SDK 提供的dll都需要加载。
b. 本文中图片格式使用了ASVL_PAF_RGB24_B8G8R8。
c. 每个接口都需要定义返回值以及参数类型,某些参数类型依赖前文所述的基本数据结构。
点击(此处)折叠或打开
- from arcsoft_face_struct import * from ctypes import * from enum import Enum
- face_dll = CDLL("libarcsoft_face.dll")
- face_engine_dll = CDLL("libarcsoft_face_engine.dll")
- ASF_DETECT_MODE_VIDEO = 0x00000000
- ASF_DETECT_MODE_IMAGE = 0xFFFFFFFF ASF_NONE = 0x00000000
- ASF_FACE_DETECT = 0x00000001 ASF_FACE_RECOGNITION = 0x00000004
- ASF_AGE = 0x00000008
- ASF_GENDER = 0x00000010
- ASF_FACE3DANGLE = 0x00000020
- ASF_LIVENESS = 0x00000080
- ASF_IR_LIVENESS = 0x00000400
- ASVL_PAF_RGB24_B8G8R8 = 0x201
- class ArcSoftFaceOrientPriority(Enum):
- ASF_OP_0_ONLY = 0x1,
- ASF_OP_90_ONLY = 0x2,
- ASF_OP_270_ONLY = 0x3,
- ASF_OP_180_ONLY = 0x4,
- ASF_OP_0_HIGHER_EXT = 0x5,
- activate = face_engine_dll.ASFActivation
- activate.restype = c_int32
- activate.argtypes = (c_char_p, c_char_p)
- init_engine = face_engine_dll.ASFInitEngine
- init_engine.restype = c_int32
- init_engine.argtypes = (c_long, c_int32, c_int32, c_int32, c_int32, POINTER(c_void_p))
- detect_face = face_engine_dll.ASFDetectFaces
- detect_face.restype = c_int32
- detect_face.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte), POINTER(ASFMultiFaceInfo))
- extract_feature = face_engine_dll.ASFFaceFeatureExtract
- extract_feature.restype = c_int32
- extract_feature.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte),
- POINTER(ASFSingleFaceInfo), POINTER(ASFFaceFeature))
- compare_feature = face_engine_dll.ASFFaceFeature
- Compare compare_feature.restype = c_int32
- compare_feature.argtypes = (c_void_p, POINTER(ASFFaceFeature), POINTER(ASFFaceFeature), POINTER(c_float))
- set_liveness_param = face_engine_dll.ASFSetLivenessParam
- set_liveness_param.restype = c_int32
- set_liveness_param.argtypes = (c_void_p, POINTER(ASFLivenessThreshold))
- process = face_engine_dll.ASFProcess process.restype =
- c_int32 process.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte),
- POINTER(ASFMultiFaceInfo), c_int32)
- get_age = face_engine_dll.ASFGetAge
- get_age.restype = c_int32
- get_age.argtypes = (c_void_p, POINTER(ASFAgeInfo))
- get_gender = face_engine_dll.ASFGetGender
- get_gender.restype = c_int32
- get_gender.argtypes = (c_void_p, POINTER(ASFGenderInfo))
- get_3d_angle = face_engine_dll.ASFGetFace3DAngle
- get_3d_angle.restype = c_int32
- get_3d_angle.argtypes = (c_void_p, POINTER(ASFFace3DAngle))
- get_liveness_info = face_engine_dll.ASFGetLivenessScore
- get_liveness_info.restype = c_int32
- get_liveness_info.argtypes = (c_void_p, POINTER(ASFLivenessInfo))
接下来按照下面的流程图介绍接口调用(此图使用 Microsoft Visio 2016自动生成)。
下图是按照此流程处理得到的效果图,由于画面有限,只显示了年龄、性别、活体信息。
a. 激活
需要注意app_id和sdk_key需要使用字节类型。
点击(此处)折叠或打开
- app_id = b""
- sdk_key = b""
- ret = arcsoft_face_func.activate(app_id, sdk_key) # 激活
- if ret == 0 or ret == 90114:
- print("激活成功")
- else:
- print("激活失败:", ret)
b. 初始化
初始化需要将所有需要的功能参数一次性传入,本文使用了人脸检测、特征提取等功能。
点击(此处)折叠或打开
- mask = arcsoft_face_func.ASF_FACE_DETECT | \
- arcsoft_face_func.ASF_FACE_RECOGNITION | \
- arcsoft_face_func.ASF_AGE | \
- arcsoft_face_func.ASF_GENDER | \
- arcsoft_face_func.ASF_FACE3DANGLE |\
- arcsoft_face_func.ASF_LIVENESS
- engine = c_void_p()
- ret = arcsoft_face_func.init_engine(arcsoft_face_func.ASF_DETECT_MODE_IMAGE,
- arcsoft_face_func.ArcSoftFaceOrientPriority.ASF_OP_0_ONLY.value[0],
- 30, 10, mask, byref(engine))
- if ret == 0:
- print("初始化成功")
- else:
- print("初始化失败:", ret)
c. 人脸检测
本文使用了opencv读图,兼容性更好,并且自定义的数据结构记录图片信息,注意 ArcFace C++ SDK 要求传入的图像宽度需要是4的倍数,下面做了裁剪。
点击(此处)折叠或打开
- class Image:
- def __init__(self):
- self.width = 0
- self.height = 0
- self.imageData = None
- def load_image(file_path):
- img = cv2.imread(file_path)
- sp = img.shape
- img = cv2.resize(img, (sp[1]//4*4, sp[0]))# 四字节对齐
- image = Image()
- image.width = img.shape[1]
- image.height = img.shape[0]
- image.imageData = img
- return image
点击(此处)折叠或打开
- ###################### 人脸检测 ##################################
- image1 = load_image(r"1.jpg")
- image_bytes = bytes(image1.imageData)
- image_ubytes = cast(image_bytes, c_ubyte_p)
- detect_faces = ASFMultiFaceInfo()
- ret = arcsoft_face_func.detect_face(
- engine,
- image1.width,
- image1.height,
- arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8,
- image_ubytes,
- byref(detect_faces)
- )
- if ret == 0:
- print("检测人脸成功")
- else:
- print("检测人脸失败:", ret)
d. 特征提取
特征提取只支持单人脸,因此做了人脸处理操作,并且需要及时将提取的人脸特征拷贝一份,否则会被覆盖。
点击(此处)折叠或打开
- single_face1 = ASFSingleFaceInfo()
- single_face1.faceRect = detect_faces.faceRect[0]
- single_face1.faceOrient = detect_faces.faceOrient[0]
- face_feature = ASFFaceFeature()
- ret = arcsoft_face_func.extract_feature(
- engine,
- image1.width,
- image1.height,
- arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8,
- image_ubytes,
- single_face1,
- byref(face_feature)
- )
- if ret == 0:
- print("提取特征1成功")
- else:
- print("提取特征1失败:", ret)
- feature1 = ASFFaceFeature()
- feature1.featureSize = face_feature.featureSize
- feature1.feature = malloc(feature1.featureSize)
- memcpy(c_void_p(feature1.feature),
- c_void_p(face_feature.feature),
- feature1.featureSize)
e. 特征比对
按照前文所述再提取一张人脸的特征,即可以进行下面的人脸特征比对操作
点击(此处)折叠或打开
- compare_threshold = c_float()
- ret = arcsoft_face_func.compare_feature(
- engine, feature1, feature2, compare_threshold
- )
- free(c_void_p(feature1.feature))
- free(c_void_p(feature2.feature))
- if ret == 0:
- print("特征比对成功,相似度:", compare_threshold.value)
- else:
- print("特征比对失败:", ret)
f. 年龄、性别、3D Angle
process接口目前提供了 年龄、性别、3D Angle、活体检测, 但年龄、性别、3D Angle支持多人脸,而活体只支持单人脸,因此下面分别处理。
点击(此处)折叠或打开
- process_mask = arcsoft_face_func.ASF_AGE | \
- arcsoft_face_func.ASF_GENDER | \
- arcsoft_face_func.ASF_FACE3DANGLE
- ret = arcsoft_face_func.process(
- engine,
- image1.width,
- image1.height,
- arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8,
- image_ubytes,
- byref(detect_faces),
- c_int32(process_mask)
- )
- if ret == 0:
- print("process成功")
- else:
- print("process失败:", ret)
点击(此处)折叠或打开
- ######################## Age ################################
- age_info = ASFAgeInfo()
- ret = arcsoft_face_func.get_age(engine, byref(age_info))
- if ret == 0:
- print("get_age 成功")
- age_ptr = cast(age_info.ageArray, POINTER(c_int))
- for i in range(age_info.num):
- print("face", i, "age:", age_ptr[i])
- else:
- print("get_age 失败:", ret)
- ####################### Gender #################################
- gender_info = ASFGenderInfo()
- ret = arcsoft_face_func.get_gender(engine, byref(gender_info))
- if ret == 0:
- print("get_gender 成功")
- gender_ptr = cast(gender_info.genderArray, POINTER(c_int))
- for i in range(gender_info.num):
- print("face", i, "gender:",
- "女性" if (gender_ptr[i] == 1) else (
- "男性" if (gender_ptr[i] == 0) else "未知"
- ))
- else:
- print("get_gender 失败:", ret)
- ####################### 3D Angle #################################
- angle_info = ASFFace3DAngle()
- ret = arcsoft_face_func.get_3d_angle(engine, byref(angle_info))
- if ret == 0:
- print("get_3d_angle 成功")
- roll_ptr = cast(angle_info.roll, POINTER(c_float))
- yaw_ptr = cast(angle_info.yaw, POINTER(c_float))
- pitch_ptr = cast(angle_info.pitch, POINTER(c_float))
- status_ptr = cast(angle_info.status, POINTER(c_int32))
- for i in range(angle_info.num):
- print("face", i,
- "roll:", roll_ptr[i],
- "yaw:", yaw_ptr[i],
- "pitch:", pitch_ptr[i],
- "status:", "正常" if status_ptr[i] == 0 else "出错")
- else:
- print("get_3d_angle 失败:", ret)
g. RGB活体
在活体检测之前建议按照实际场景设置活体阈值,不设置即使用默认阈值,这里设置了RGB活体的阈值为0.75。并将检测的多人脸分别转为单张人脸的参数传到接口中。
点击(此处)折叠或打开
- ######################### 活体阈值设置 ###############################
- threshold_param = ASFLivenessThreshold()
- threshold_param.thresholdmodel_BGR = 0.75
- ret = arcsoft_face_func.set_liveness_param(engine,threshold_param)
- if ret == 0:
- print("set_liveness_param成功")
- else:
- print("set_liveness_param 失败:", ret)
- temp_face_info = ASFMultiFaceInfo()
- temp_face_info.faceNum = 1
- LP_MRECT = POINTER(MRECT)
- temp_face_info.faceRect = LP_MRECT(MRECT(malloc(sizeof(MRECT))))
- LP_c_long = POINTER(c_long)
- temp_face_info.faceOrient = LP_c_long(c_long(malloc(sizeof(c_long))))
- for i in range(detect_faces.faceNum):
- temp_face_info.faceRect[0] = detect_faces.faceRect[i]
- temp_face_info.faceOrient[0] = detect_faces.faceOrient[i]
- ret = arcsoft_face_func.process(
- engine,
- image1.width,
- image1.height,
- arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8,
- image_ubytes,
- byref(temp_face_info),
- c_int32(arcsoft_face_func.ASF_LIVENESS)
- )
- if ret == 0:
- print("process成功")
- else:
- print("process失败:", ret)
- ## RGB活体检测
- ret = arcsoft_face_func.process(
- engine,
- image1.width,
- image1.height,
- arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8,
- image_ubytes,
- byref(temp_face_info),
- c_int32(arcsoft_face_func.ASF_LIVENESS)
- )
- if ret == 0:
- print("process成功")
- else:
- print("process失败:", ret)
- liveness_info = ASFLivenessInfo()
- ret = arcsoft_face_func.get_liveness_info(engine, byref(liveness_info))
- if ret == 0:
- print("get_liveness_info 成功")
- liveness_ptr = cast(liveness_info.isLive, POINTER(c_int))
- print("face", i, "liveness:",
- "非真人" if (liveness_ptr[0] == 0) else (
- "真人" if (liveness_ptr[0] == 1) else (
- "不确定" if (liveness_ptr[0] == -1) else (
- "传入人脸数>1" if (liveness_ptr[0] == -2) else
- (liveness_ptr[0])
- )
- )
- ))
- else:
- print("get_liveness_info 失败:", ret)
最后,欢迎大家指教哦~
推荐你们了解虹软人脸识别SDK~
虹软人脸识别开放平台