题目传送门

题意:给出衣服有向无环图(DAG),,定义出度为0的点为中心城市,每次询问给出两个点,求破坏任意一个城市,使得这两个点至少有一个点无法到达中心城市,求方案数。

思路:首先建立反向图,将城市到若干个终点看成从若干个起点出发到某个城市,再用一个源点连接那些度为0    的点,即可看成从源点出发到某个城市。要炸掉一个点使得无法到达某个城市,那么需要炸掉的是从源点到该城市的必经点,考虑建立支配树,根据定义可知支配树到根的链上结点个数就是必经点的个数。两个城市的容斥减去 LCA 到根上这条链即可。由于保证是 DAG ,因此直接按拓扑序建树即可,建完树利用结点的 depth 来求点到根的链长,注意最后答案要减去一开始添加的源点。

  DAG支配树求法:先求拓扑序,按照拓扑序处理(建树)。对于一个点,所有能到达它的点在支配树中的lca,就是它支配树中的父亲。由于能到达他的点拓扑序必定比他本身小,所以肯定已经在建好的支配树上了,必定能求出lca。

  现在还不会非DAG的支配树,学习博客为  https://wenku.baidu.com/view/b06471d019e8b8f67d1cb91b.html

#include<bits/stdc++.h>
#define pb(a) push_back(a)
#define clr(a) memset(a, 0, sizeof(a))
using namespace std;
const int maxn = 1e5 + ;
vector<int >ve[maxn],rve[maxn];
int n,m,T;
int deg[maxn],dep[maxn],id[maxn],tot;
int f[maxn][];
int rt=n+;
void bfs(){
rt=n+;
queue<int >q;
for(int i=;i<=n;i++){
if(!deg[i]){
q.push(i);
ve[i].pb(rt);
rve[rt].pb(i);
}
}
while(!q.empty()){
int u=q.front();
q.pop();
id[++tot]=u;
int si=rve[u].size();
for(int i=;i<si;i++){
int v=rve[u][i];
if((--deg[v])==){
q.push(v);
}
}
}
}
int LCA(int x,int y){
if(dep[x]>dep[y])swap(x,y);
for(int i=;i>=;i--){
if(dep[y]>dep[x]&&dep[x]<=dep[f[y][i]])y=f[y][i];
}
for(int i=;i>=;i--){
if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
}
return x==y?x:f[x][];
}
int main(){
cin>>T;
while(T--){
cin>>n>>m;
for(int i=;i<=n+;i++){
ve[i].clear(),rve[i].clear();
deg[i]=dep[i]=;
}
tot=;
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
ve[u].pb(v);
rve[v].pb(u);
deg[u]++;
}
bfs();
dep[rt]=;
for(int i=;i<=n;i++){
int fa=-;
int u=id[i];
int si=ve[u].size();
for(int j=;j<si;j++){
int v=ve[u][j];
fa=(fa==-)?v:LCA(fa,v);
}
dep[u]=dep[fa]+;
f[u][]=fa;
for(int j=;j<=;j++){
f[u][j]=f[f[u][j-]][j-];
}
}
int q,u,v;
cin>>q;
while(q--){
scanf("%d%d",&u,&v);
int lca=LCA(u,v);
printf("%d\n",dep[u]+dep[v]-dep[lca]-);
}
}
}
05-16 04:36