开发环境
- TensorFlow: 1.2.0
- Python: 3.6
- Python IDE: PyCharm 2017.2
- Android IDE: Android Studio 3.0
训练与评估
训练和评估部分主要目的是生成用于测试用的pb文件,其保存了利用TensorFlow python API构建训练后的网络拓扑结构和参数信息,实现方式有很多种,除了cnn外还可以使用rnn,fcnn等。
其中基于cnn的函数也有两套,分别为tf.layers.conv2d和tf.nn.conv2d, tf.layers.conv2d使用tf.nn.conv2d作为后端处理,参数上filters是整数,filter是4维张量。原型如下:
convolutional.py文件
def conv2d(inputs, filters, kernel_size, strides=(1, 1), padding=’valid’, data_format=’channels_last’,
dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None,
bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None,
reuse=None)
gen_nn_ops.py 文件
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None)
官方Demo实例中使用的是layers module,结构如下:
- Convolutional Layer #1:32个5×5的filter,使用ReLU激活函数
- Pooling Layer #1:2×2的filter做max pooling,步长为2
- Convolutional Layer #2:64个5×5的filter,使用ReLU激活函数
- Pooling Layer #2:2×2的filter做max pooling,步长为2
- Dense Layer #1:1024个神经元,使用ReLU激活函数,dropout率0.4
(为了避免过拟合,在训练的时候,40%的神经元会被随机去掉) - Dense Layer #2 (Logits Layer):10个神经元,每个神经元对应一个类别(0-9)
核心代码在cnn_model_fn(features, labels, mode)函数中,完成卷积结构的完整定义,核心代码如下:
也可以采用传统的tf.nn.conv2d函数, 核心代码如下:
原文链接