前言......
Akka作为一种成熟的生产环境并发解决方案,必须拥有一套完善的错误异常处理机制,本文主要讲讲Akka中的监管和容错。
监管
看过我上篇文章的同学应该对Actor系统的工作流程有了一定的了解 Akka系列(二):Akka中的Actor系统,它的很重要的概念就是分而治之,既然我们把任务分配给Actor去执行,那么我们必须去监管相应的Actor,当Actor出现了失败,比如系统环境错误,各种异常,能根据我们制定的相应监管策略进行错误恢复,就是后面我们会说到的容错。
监管者
既然有监管这一事件,那必然存在着监管者这么一个角色,那么在ActorSystem中是如何确定这种角色的呢?
我们先来看下ActorSystem中的顶级监管者:
一个actor系统在其创建过程中至少要启动三个actor,如上图所示,下面来说说这三个Actor的功能:
1./
: 根监管者
顾名思义,它是一个老大,它监管着ActorSystem中所有的顶级Actor,顶级Actor有以下几种:
/user
: 是所有由用户创建的顶级actor的监管者;用ActorSystem.actorOf创建的actor在其下。/system
: 是所有由系统创建的顶级actor的监管者,如日志监听器,或由配置指定在actor系统启动时自动部署的actor。/deadLetters
: 是死信actor,所有发往已经终止或不存在的actor的消息会被重定向到这里。/temp
:是所有系统创建的短时actor的监管者,例如那些在ActorRef.ask的实现中用到的actor。/remote
: 是一个人造虚拟路径,用来存放所有其监管者是远程actor引用的actor。
跟我们平常打交道最多的就是/user
,它是我们在程序中用ActorSystem.actorOf创建的actor的监管者,下面的容错我们重点关心的就是它下面的失败处理,其他几种顶级Actor具体功能定义已经给出,有兴趣的也可以去了解一下。
根监管者监管着所有顶级Actor,对它们的各种失败情况进行处理,一般来说如果错误要上升到根监管者,整个系统就会停止。
2./user
: 顶级actor监管者
上面已经讲过/user
是所有由用户创建的顶级actor的监管者,即用ActorSystem.actorOf创建的actor,我们可以自己制定相应的监管策略,但由于它是actor系统启动时就产生的,所以我们需要在相应的配置文件里配置,具体的配置可以参考这里Akka配置
3./system
: 系统监管者
/system
所有由系统创建的顶级actor的监管者,比如Akka中的日志监听器,因为在Akka中日志本身也是用Actor实现的,/system
的监管策略如下:对收到的除ActorInitializationException
和ActorKilledException
之外的所有Exception
无限地执行重启,当然这也会终止其所有子actor。所有其他Throwable被上升到根监管者,然后整个actor系统将会关闭。
用户创建的普通actor的监管:
上一篇文章介绍了Actor系统的组织结构,它是一种树形结构,其实这种结构对actor的监管是非常有利的,Akka实现的是一种叫“父监管”的形式,每一个被创建的actor都由其父亲所监管,这种限制使得actor的监管结构隐式符合其树形结构,所以我们可以得出一个结论:
一个被创建的Actor肯定是一个被监管者,也可能是一个监管者,它监管着它的子级Actor
监管策略
上面我们对ActorSystem中的监管角色有了一定的了解,那么到底是如何制定相应的监管策略呢?Akka中有以下4种策略:
- 恢复下属,保持下属当前积累的内部状态
- 重启下属,清除下属的内部状态
- 永久地停止下属
- 升级失败(沿监管树向上传递失败),由此失败自己
这其实很好理解,下面是一个简单例子:
override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {
case _: ArithmeticException => Resume //恢复
case _: NullPointerException => Restart //重启
case _: IllegalArgumentException => Stop //停止
case _: Exception => Escalate //向上级传递
}
我们可以根据异常的不同使用不同监管策略,在后面我会具体给出一个示例程序帮助大家理解。我们在实现自己的策略时,需要复写Actor中的supervisorStrategy
,因为Actor的默认监管策略如下:
final val defaultDecider: Decider = {
case _: ActorInitializationException ⇒ Stop
case _: ActorKilledException ⇒ Stop
case _: DeathPactException ⇒ Stop
case _: Exception ⇒ Restart
}
它对除了它指定的异常进行停止,其他异常都是对下属进行重启。
Akka中有两种类型的监管策略:OneForOneStrategy
和AllForOneStrategy
,它们的主要区别在于:
OneForOneStrategy
: 该策略只会应用到发生故障的子actor上。AllForOneStrategy
: 该策略会应用到所有的子actor上。
我们一般都使用OneForOneStrategy
来进行制定相关监管策略,当然你也可以根据具体需求选择合适的策略。另外我们可以给我们的策略配置相应参数,比如上面maxNrOfRetries,withinTimeRange等,这里的含义是每分钟最多进行10次重启,若超出这个界限相应的Actor将会被停止,当然你也可以使用策略的默认配置,具体配置信息可以参考源码。
监管容错示例
本示例主要演示Actor在发生错误时,它的监管者会根据相应的监管策略进行不同的处理。源码链接
因为这个例子比较简单,这里我直接贴上相应代码,后面根据具体的测试用例来解释各种监管策略所进行的响应:
class Supervisor extends Actor {
//监管下属,根据下属抛出的异常进行相应的处理
override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {
case _: ArithmeticException => Resume
case _: NullPointerException => Restart
case _: IllegalArgumentException => Stop
case _: Exception => Escalate
}
var childIndex = 0 //用于标示下属Actor的序号 def receive = {
case p: Props =>
childIndex += 1
//返回一个Child Actor的引用,所以Supervisor Actor是Child Actor的监管者
sender() ! context.actorOf(p,s"child${childIndex}")
}
} class Child extends Actor {
val log = Logging(context.system, this)
var state = 0
def receive = {
case ex: Exception => throw ex //抛出相应的异常
case x: Int => state = x //改变自身状态
case s: Command if s.content == "get" =>
log.info(s"the ${s.self} state is ${state}")
sender() ! state //返回自身状态
}
} case class Command( //相应命令
content: String,
self: String
)
现在我们来看看具体的测试用例: 首先我们先构建一个测试环境:
class GuardianSpec(_system: ActorSystem)
extends TestKit(_system)
with WordSpecLike
with Matchers
with ImplicitSender { def this() = this(ActorSystem("GuardianSpec")) "A supervisor" must { "apply the chosen strategy for its child" in {
code here...
val supervisor = system.actorOf(Props[Supervisor], "supervisor") //创建一个监管者
supervisor ! Props[Child]
val child = expectMsgType[ActorRef] // 从 TestKit 的 testActor 中获取回应
}
}
}
1.TestOne:正常运行
child ! 50 // 将状态设为 50
child ! Command("get",child.path.name)
expectMsg(50)
正常运行,测试通过。
2.TestTwo:抛出ArithmeticException
child ! new ArithmeticException // crash it
child ! Command("get",child.path.name)
expectMsg(50)
大家猜这时候测试会通过吗?答案是通过,原因是根据我们制定的监管策略,监管者在面对子级Actor抛出ArithmeticException
异常时,它会去恢复相应出异常的Actor,并保持该Actor的状态,所以此时Actor的状态值还是50,测试通过。
3.TestThree:抛出NullPointerException
child ! new NullPointerException // crash it harder
child ! "get"
expectMsg(50)
这种情况下测试还会通过吗?答案是不通过,原因是根据我们制定的监管策略,监管者在面对子级Actor抛出NullPointerException
异常时,它会去重启相应出异常的Actor,其状态会被清除,所以此时Actor的状态值应该是0,测试不通过。
4.TestFour:抛出IllegalArgumentException
supervisor ! Props[Child] // create new child
val child2 = expectMsgType[ActorRef]
child2 ! 100 // 将状态设为 100
watch(child) // have testActor watch “child”
child ! new IllegalArgumentException // break it
expectMsgPF() {
case Terminated(`child`) => (println("the child stop"))
}
child2 ! Command("get",child2.path.name)
expectMsg(100)
这里首先我们又创建了一个Child Actor为child2,并将它的状态置为100,这里我们监控前面创建的child1,然后给其发送一个IllegalArgumentException
的消息,让其抛出该异常,测试结果: the child stop 测试通过
从结果中我们可以看出,child在抛出IllegalArgumentException
后,会被其监管着停止,但监管者下的其他Actor还是正常工作。
5.TestFive:抛出一个自定义异常
watch(child2)
child2 ! Command("get",child2.path.name) // verify it is alive
expectMsg(100)
supervisor ! Props[Child] // create new child
val child3 = expectMsgType[ActorRef]
child2 ! new Exception("CRASH") // escalate failure
expectMsgPF() {
case t @ Terminated(`child2`) if t.existenceConfirmed => (
println("the child2 stop")
)
}
child3 ! Command("get",child3.path.name)
expectMsg(0)
这里首先我们又创建了一个Child Actor为child3,这里我们监控前面创建的child2,然后给其发送一个Exception("CRASH")
的消息,让其抛出该异常,测试结果: the child2 stop 测试不通过
很多人可能会疑惑为什么TestFour可以通过,这里就通不过不了呢?因为这里错误Actor抛出的异常其监管者无法处理,只能将失败上溯传递,而顶级actor的缺省策略是对所有的Exception情况(ActorInitializationException和ActorKilledException例外)进行重启. 由于缺省的重启指令会停止所有的子actor,所以我们这里的child3也会被停止。导致测试不通过。当然这里你也可以复写默认的重启方法,比如:
override def preRestart(cause: Throwable, msg: Option[Any]) {}
这样重启相应Actor时就不会停止其子级下的所有Actor了。
本文主要介绍了Actor系统中的监管和容错,这一部分内容在Akka中也是很重要的,它与Actor的树形组织结构巧妙结合,本文大量参考了Akka官方文档的相应章节,有兴趣的同学可以点击这里Akka docs。也可以下载我的示例程序,里面包含了一个官方的提供的容错示例。