【BZOJ2125】最短路(仙人掌,圆方树)

题面

BZOJ

求仙人掌上两点间的最短路

题解

终于要构建圆方树啦

首先构建出圆方树,因为是仙人掌,和一般图可以稍微的不一样

直接\(tarjan\)缩点,对于每一个强连通分量构建方点(只有一个点的就不要建了)

圆方边的权值定义为到\(dfs\)(\(Tarjan\)不就是搞了一棵\(dfs\)树出来吗?)树上深度最小的点的最短距离。

为什么会有最短距离?因为它是一个环啊,走两侧的距离是不同的。

将圆方树树链剖分,和普通的求距离一样,先求解\(LCA\)

如果\(LCA\)是圆点,那么和普通的树没有任何区别,直接求解

如果是方点,那么意味这这两个点的祖先在一个环上

因此,最短路要考虑这个环上这两个祖先的较小距离

对于方点维护一下环的长度,记录一下每个点到达深度最小的点是否经过返祖边

求距离时,首先跳到这两个环上的点,然后计算一下距离就好啦。

怎么跳到环上?

方案一:不用树链剖分了,我直接用倍增

方案二:考虑树链剖分每个点只有一个重儿子,现在要求的是当前这个点到达\(LCA\)的所有祖先中,是\(LCA\)儿子的那个点。

我们分类讨论一下,如果它是重儿子,那就是\(LCA\)的\(dfs\)序的后面那个点。

如果不是重儿子,那么它就是一条重链的起点,并且他的父亲是\(LCA\)。

既然这样,沿着重链跳就好啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 20000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next,w;};
struct Link
{
Line e[111111];
int h[MAX],cnt;
inline void Add(int u,int v,int w)
{
e[++cnt]=(Line){v,h[u],w};h[u]=cnt;
e[++cnt]=(Line){u,h[v],w};h[v]=cnt;
}
}T,G;
int n;
struct RST
{
int fa[MAX],size[MAX],hson[MAX],top[MAX],dep[MAX],dis[MAX];
int dfn[MAX],tim,ln[MAX],cir[MAX];
bool zn[MAX];
void dfs1(int u,int ff)
{
fa[u]=ff;size[u]=1;dep[u]=dep[ff]+1;
for(int i=T.h[u];i;i=T.e[i].next)
{
int v=T.e[i].v;if(v==ff)continue;
dis[v]=dis[u]+T.e[i].w;
dfs1(v,u);size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim,ln[tim]=u;
if(hson[u])dfs2(hson[u],tp);
for(int i=T.h[u];i;i=T.e[i].next)
if(T.e[i].v!=fa[u]&&T.e[i].v!=hson[u])
dfs2(T.e[i].v,T.e[i].v);
}
int LCA(int u,int v)
{
while(top[u]^top[v])dep[top[u]]<dep[top[v]]?v=fa[top[v]]:u=fa[top[u]];
return dep[u]<dep[v]?u:v;
}
int Jump(int u,int LCA)
{
int ret;
while(top[u]!=top[LCA])
ret=top[u],u=fa[top[u]];
return u==LCA?ret:ln[dfn[LCA]+1];
}
int Query(int u,int v)
{
int lca=LCA(u,v);
if(lca<=n)return dis[u]+dis[v]-2*dis[lca];
int uu=Jump(u,lca),vv=Jump(v,lca);
int d1=dis[uu]-dis[lca],d2=dis[vv]-dis[lca];
if(!zn[uu])d1=cir[lca]-d1;if(!zn[vv])d2=cir[lca]-d2;
return dis[u]-dis[uu]+dis[v]-dis[vv]+min(abs(d1-d2),cir[lca]-abs(d1-d2));
}
}RST;
int dfn[MAX],low[MAX],tim,tp[MAX],dep[MAX];
int fa[MAX];
ll dis[MAX];
int S[MAX],tot,m,Q;
void Build(int u,int y,int d)
{
int top=dep[y]-dep[u]+1,sum=d,Dis=0;
for(int i=y;i!=u;i=fa[i])S[top--]=i,sum+=dis[i]-dis[fa[i]];
++tot;S[1]=u;top=dep[y]-dep[u]+1;RST.cir[tot]=sum;
for(int i=1;i<=top;++i)
{
int D=min(Dis,sum-Dis);
T.Add(tot,S[i],D);
RST.zn[S[i]]=(D==Dis);
Dis+=dis[S[i+1]]-dis[S[i]];
}
}
void Tarjan(int u,int ff)
{
dfn[u]=low[u]=++tim;dep[u]=dep[ff]+1;fa[u]=ff;
for(int i=G.h[u];i;i=G.e[i].next)
{
int v=G.e[i].v;if(v==ff)continue;
if(!dfn[v])
{
dis[v]=dis[u]+G.e[i].w;
Tarjan(v,u);low[u]=min(low[u],low[v]);
}
else low[u]=min(low[u],dfn[v]);
if(dfn[u]<low[v])T.Add(u,v,G.e[i].w);
}
for(int i=G.h[u];i;i=G.e[i].next)
{
int v=G.e[i].v;if(v==ff)continue;
if(fa[v]!=u&&dfn[u]<dfn[v])Build(u,v,G.e[i].w);
}
}
int main()
{
tot=n=read();m=read();Q=read();G.cnt=1;
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
G.Add(u,v,w);
}
Tarjan(1,0);
RST.dfs1(1,0);RST.dfs2(1,1);
while(Q--)printf("%d\n",RST.Query(read(),read()));
return 0;
}
05-11 15:47