MEMS陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS陀螺仪均采用振动物体传感角速度的概念。利用振动来诱导和探测科里奥利力而设计的MEMS陀螺仪没有旋转部件、不需要轴承,已被证明可以用微机械加工技术大批量生产。 
  绝大多数MEMS陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力。振动物体被柔软的弹性结构悬挂在基底之上。整体动力学系统是二维弹性阻尼系统,在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式。
MEMS陀螺仪(gyroscope)的结构-LMLPHP

(图一)
  通过改进设计和静电调试使得驱动和传感的共振频率一致,以实现最大可能的能量转移,从而获得最大灵敏度。大多数MEMS陀螺仪驱动和传感模式完全匹配或接近匹配,它对系统的振动参数变化极其敏感,而这些系统参数会改变振动的固有频率,因此需要一个好的控制架构来做修正。如果需要高的品质因子(Q),驱动和感应的频宽必须很窄。增加1%的频宽可能降低20%的信号输出。(图二(a)) 还有阻尼大小也会影响信号输出。

MEMS陀螺仪(gyroscope)的结构-LMLPHP
(图二)

  一般的MEMS陀螺仪由梳子结构的驱动部分(图三)和电容板形状的传感部分组成。(图五)有的设计还带有去驱动和传感耦合的结构。(图六) (曹志良)

MEMS陀螺仪(gyroscope)的结构-LMLPHP
(图三)
MEMS陀螺仪(gyroscope)的结构-LMLPHP

(图四)
MEMS陀螺仪(gyroscope)的结构-LMLPHP
(图五)

MEMS陀螺仪(gyroscope)的结构-LMLPHP
(图六)

05-06 12:37