1. 问题由来
由于RDD是只读不可更改的,即Spark RDD的Immutable特性,如果想要更新或删除RDD里面的数据,就要遍历整个RDD进行操作,并生成一个新的RDD。
有的同学会有疑问,为什么不把RDD设计成可读写,这样就不会有这些问题。我刚开始研究Spark时也有这个困惑,后来查了相关资料,RDD设计为只读不可更改是有原因的。
这样设计是为了保证数据一致性,简化不必要的锁机制。当执行update或者delete时不能直接在原先数据上操作,修改原先的数据内容,以前的做法是从原数据中拷贝一份出来进行修改或删除。
并且对于Streaming Aggregation(聚合)以及Incremental(增量) Algorithm之类的算法,每次迭代都会更新少量数据,但是需要迭代非常多的次数,所以每一次对RDD的更新代价都很大。
针对这个问题AMPLab的Ankur Dave提出了IndexedRDD,它是Immutability和Fine-Grained updates的精妙结合。IndexedRDD是一个基于RDD的Key-Value Store,扩展自RDD[(K, V)],可以在IndexRDD上进行高效的查找、更新以及删除。
2. 设计思路
按照Key的Hash值把数据保持到不同的Partition中。
在每个Partition中根据Key建立索引,通过新建节点复用老节点的方式来实现数据的更新。
3. IndexedRDD API
IndexedRDD主要提供了三个接口:
multiget: 获取一组Key的Value
multiput: 更新一组Key的Value
delete: 删除一组Key的Value
class IndexedRDD[K: ClassTag, V: ClassTag] extends RDD[(K, V)] { /** Gets the values corresponding to the specified keys, if any. */ def multiget(ks: Array[K]): Map[K, V] /** * Updates the keys in `kvs` to their corresponding values, running `merge` on old and new values * if necessary. Returns a new IndexedRDD that reflects the modification. */ def multiput[U: ClassTag](kvs: Map[K, U], z: (K, U) => V, f: (K, V, U) => V): IndexedRDD[K, V] /** * Deletes the specified keys. Returns a new IndexedRDD that reflects the deletions. */ def delete(ks: Array[K]): IndexedRDD[K, V] }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
此外IndexedRDD还提供了基于RDD 构建IndexedRDD的函数:
object IndexedRDD { /** * Constructs an updatable IndexedRDD from an RDD of pairs, merging duplicate keys arbitrarily. */ def apply[K: ClassTag : KeySerializer, V: ClassTag] (elems: RDD[(K, V)]): IndexedRDD[K, V] }
- 1
- 2
- 3
- 4
- 5
- 6
4. IndexedRDD使用
下面这个例子来自IndexedRDD的Github页面,展示IndexedRDD的使用例子。
import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD // Create an RDD of key-value pairs with Long keys. val rdd = sc.parallelize((1 to 1000000).map(x => (x.toLong, 0))) // Construct an IndexedRDD from the pairs, hash-partitioning and indexing // the entries. val indexed = IndexedRDD(rdd).cache() // Perform a point update. val indexed2 = indexed.put(1234L, 10873).cache() // Perform a point lookup. Note that the original IndexedRDD remains // unmodified. indexed2.get(1234L) // => Some(10873) indexed.get(1234L) // => Some(0) // Efficiently join derived IndexedRDD with original. val indexed3 = indexed.innerJoin(indexed2) { (id, a, b) => b }.filter(_._2 != 0) indexed3.collect // => Array((1234L, 10873)) // Perform insertions and deletions. val indexed4 = indexed2.put(-100L, 111).delete(Array(998L, 999L)).cache() indexed2.get(-100L) // => None indexed4.get(-100L) // => Some(111) indexed2.get(999L) // => Some(0) indexed4.get(999L) // => None
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
目前IndexedRDD还没有merge到spark源码中,所以使用IndexedRDD需要添加以下依赖:
resolvers += "Spark Packages Repo" at "http://dl.bintray.com/spark-packages/maven" libraryDependencies += "amplab" % "spark-indexedrdd" % "0.3"
- 1
- 2
5. Persistent Adaptive Radix Trees(PART)
IndexedRDD的每个Partition的存储用的是Persisten Adaptive Radix Trees,翻译出来应该是“持久化自适应基数树”。在Linux中也是有“基数树”,主要作用是做内存管理。IndexedRDD的PART 主要特点有:
基于索引的内存存储结构
针对CPU Cache进行优化(相对B-Tree)
支持多个Key同时查询 (Hash Table每次只能查一个Key)
支持快速插入和删除
数据保持有序,支持Range Scan和Prefix Lookup
更多细节请看PART论文以及Github: ART Java实现。
6. PART的主要函数
public class ArtTree extends ChildPtr implements Serializable { //拷贝一份镜像,其实就是增加一个root节点的引用 public ArtTree snapshot(); //寻找Key对应的Value public Object search(final byte[] key); //插入 public void insert(final byte[] key, Object value) throws UnsupportedOperationException; //删除 public void delete(final byte[] key); //返回迭代器 public Iterator<Tuple2<byte[], Object>> iterator(); //元素个数 public long size(); //析构 public int destroy(); ... } //删除 public void delete(final byte[] key); //返回迭代器 public Iterator<Tuple2<byte[], Object>> iterator(); //元素个数 public long size(); //析构 public int destroy(); ... //元素个数 public long size(); //析构 public int destroy(); ...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
7. 实现分析
IndexedRDD的实现相当简洁,只有800LOC(Line Of Code)。
KeySerializer.scala:定义了如何把Key序列化成Byte Array,以及反序列化的方法
trait KeySerializer[K] extends Serializable { def toBytes(k: K): Array[Byte] def fromBytes(b: Array[Byte]): K } //默认实现了Long和String类型的KeySerializer class LongSerializer extends KeySerializer[Long] class StringSerializer extends KeySerializer[String]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
IndexedRDDPartition.scala:定义了Partition的接口
private[indexedrdd] abstract class IndexedRDDPartition[K, V] extends Serializable { def multiget(ks: Iterator[K]): Iterator[(K, V)] def multiput[U]( kvs: Iterator[(K, U)], z: (K, U) => V, f: (K, V, U) => V): IndexedRDDPartition[K, V] = throw new UnsupportedOperationException("modifications not supported") def delete(ks: Iterator[K]): IndexedRDDPartition[K, V] = throw new UnsupportedOperationException("modifications not supported") ... }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
PARTPartition.scala: Partion的PART实现,其中使用到了最重要的数据结构,即map: ArtTree。
private[indexedrdd] class PARTPartition[K, V] (protected val map: ArtTree) (override implicit val kTag: ClassTag[K], override implicit val vTag: ClassTag[V], implicit val kSer: KeySerializer[K]) extends IndexedRDDPartition[K, V] with Logging { override def apply(k: K): V = map.search(kSer.toBytes(k)).asInstanceOf[V] override def multiget(ks: Iterator[K]): Iterator[(K, V)] = ks.flatMap { k => Option(this(k)).map(v => (k, v)) } override def multiput[U]( kvs: Iterator[(K, U)], z: (K, U) => V, f: (K, V, U) => V): IndexedRDDPartition[K, V] = { val newMap = map.snapshot() for (ku <- kvs) { val kBytes = kSer.toBytes(ku._1) val oldV = newMap.search(kBytes).asInstanceOf[V] val newV = if (oldV == null) z(ku._1, ku._2) else f(ku._1, oldV, ku._2) newMap.insert(kBytes, newV) } this.withMap[V](newMap) } override def delete(ks: Iterator[K]): IndexedRDDPartition[K, V] = { val newMap = map.snapshot() for (k <- ks) { newMap.delete(kSer.toBytes(k)) } this.withMap[V](newMap) } ... }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
IndexedRDD.scala:基于PARTPartition,IndexedRDD的实现就非常简单:
class IndexedRDD[K: ClassTag, V: ClassTag]( private val partitionsRDD: RDD[IndexedRDDPartition[K, V]]) extends RDD[(K, V)](partitionsRDD.context, List(new OneToOneDependency(partitionsRDD))) { def multiget(ks: Array[K]): Map[K, V] = { val ksByPartition = ks.groupBy(k => partitioner.get.getPartition(k)) val partitions = ksByPartition.keys.toSeq // TODO: avoid sending all keys to all partitions by creating and zipping an RDD of keys val results: Array[Array[(K, V)]] = context.runJob(partitionsRDD, (context: TaskContext, partIter: Iterator[IndexedRDDPartition[K, V]]) => { if (partIter.hasNext && ksByPartition.contains(context.partitionId)) { val part = partIter.next() val ksForPartition = ksByPartition.get(context.partitionId).get part.multiget(ksForPartition.iterator).toArray } else { Array.empty } }, partitions, allowLocal = true) results.flatten.toMap } def multiput[U: ClassTag](kvs: Map[K, U], z: (K, U) => V, f: (K, V, U) => V): IndexedRDD[K, V] = { val updates = context.parallelize(kvs.toSeq).partitionBy(partitioner.get) zipPartitionsWithOther(updates)(new MultiputZipper(z, f)) } private class MultiputZipper[U](z: (K, U) => V, f: (K, V, U) => V) extends OtherZipPartitionsFunction[U, V] with Serializable { def apply(thisIter: Iterator[IndexedRDDPartition[K, V]], otherIter: Iterator[(K, U)]) : Iterator[IndexedRDDPartition[K, V]] = { val thisPart = thisIter.next() Iterator(thisPart.multiput(otherIter, z, f)) } } def delete(ks: Array[K]): IndexedRDD[K, V] = { val deletions = context.parallelize(ks.map(k => (k, ()))).partitionBy(partitioner.get) zipPartitionsWithOther(deletions)(new DeleteZipper) } private class DeleteZipper extends OtherZipPartitionsFunction[Unit, V] with Serializable { def apply(thisIter: Iterator[IndexedRDDPartition[K, V]], otherIter: Iterator[(K, Unit)]) : Iterator[IndexedRDDPartition[K, V]] = { val thisPart = thisIter.next() Iterator(thisPart.delete(otherIter.map(_._1))) } } ... }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
8. 性能
插入的吞吐率,在Batch Size比较大的情况下,比较有优势。
查询的速度是最快的,扫描和内存占用处于中间水平。
【完】
再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow