k近邻算法(KNN)

定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

k近邻算法(KNN)-LMLPHP

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd def knncls():
"""
K-近邻预测用户签到位置
:return:None
"""
# 读取数据
data = pd.read_csv("./data/FBlocation/train.csv") # print(data.head(10)) # 处理数据
# 1、缩小数据,查询数据晒讯
data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75") # 处理时间的数据
time_value = pd.to_datetime(data['time'], unit='s') print(time_value) # 把日期格式转换成 字典格式
time_value = pd.DatetimeIndex(time_value) # 构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday # 把时间戳特征删除
data = data.drop(['time'], axis=1) print(data) # 把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count() tf = place_count[place_count.row_id > 3].reset_index() data = data[data['place_id'].isin(tf.place_id)] # 取出数据当中的特征值和目标值
y = data['place_id'] x = data.drop(['place_id'], axis=1) # 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) # 特征工程(标准化)
std = StandardScaler() # 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train) x_test = std.transform(x_test) # 进行算法流程 # 超参数
knn = KNeighborsClassifier() # # fit, predict,score
# knn.fit(x_train, y_train)
#
# # 得出预测结果
# y_predict = knn.predict(x_test)
#
# print("预测的目标签到位置为:", y_predict)
#
# # 得出准确率
# print("预测的准确率:", knn.score(x_test, y_test)) # 构造一些参数的值进行搜索
param = {"n_neighbors": [3, 5, 10]} # 进行网格搜索
gc = GridSearchCV(knn, param_grid=param, cv=2) gc.fit(x_train, y_train) # 预测准确率
print("在测试集上准确率:", gc.score(x_test, y_test)) print("在交叉验证当中最好的结果:", gc.best_score_) print("选择最好的模型是:", gc.best_estimator_) print("每个超参数每次交叉验证的结果:", gc.cv_results_) return None if __name__ == "__main__":
knncls()

  

05-06 09:38