3329: Xorequ
https://www.lydsy.com/JudgeOnline/problem.php?id=3329
分析:
因为a+b = a^b + ((a&b)<<1)
所以(x&(2x))<<1是0,就是没有相邻的1。然后计算多少x满足没有相邻的1。
第一问:数位dp一下,dp[i][j]到第i位,上一个数是j的方案数。
第二问:一共n位数,只有第n位为1,所以这n位没有限制,f[i]表示到第i位,的方案数,f[i]=f[i-1]+f[i-2]。看第i位是不是1。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline LL read() {
LL x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int mod = 1e9 + ; LL dp[][], num[]; struct Matrix{
int a[][];
void Clear() { memset(a, , sizeof(a)); }
void init() { a[][] = a[][] = a[][] = ; }
Matrix operator * (const Matrix &A) const {
Matrix C; C.Clear();
for (int k=; k<; ++k)
for (int i=; i<; ++i)
for (int j=; j<; ++j)
C.a[i][j] = (C.a[i][j] + 1ll * a[i][k] * A.a[k][j]) % mod;
return C;
}
};
LL dfs(int x,int last,bool lim) {
if (!x) return ;
if (!lim && dp[x][last]) return dp[x][last];
int u = lim ? num[x] : ; // u = lim ? num[x] : 0 !!!
LL res = ;
for (int i=; i<=u; ++i)
if (!last || !i) res += dfs(x - , i, lim && i==u);
if (!lim) dp[x][last] = res;
return res;
}
LL Calc1(LL n) {
int tot = ;
while (n) {
num[++tot] = n & ;
n >>= ;
}
return dfs(tot, , ) - ;
}
LL Calc2(LL n) {
Matrix A; A.Clear(); A.init();
Matrix res; res.Clear(); res.a[][] = res.a[][] = ;
while (n) {
if (n & ) res = res * A;
A = A * A;
n >>= ;
}
return (res.a[][] + res.a[][]) % mod;
}
int main() {
int T = read();
while (T--) {
LL n = read();
printf("%lld\n%lld\n", Calc1(n), Calc2(n));
}
return ;
}