p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)
说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s用于生成预测值的误差估计。
多项式曲线求值函数:polyval( )
调用格式: y=polyval(p,x)
[y,DELTA]=polyval(p,x,s)
说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。
[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。
有如下数据
时间t | 1900 | 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 |
人口y | 76 | 92 | 106 | 123 | 132 | 151 | 179 | 203 | 227 | 250 | 281 |
1. y与t的经验公式为 y = at^2 + bt + c
clear;
clf; %清除当前窗口
clc;
t = ::; %时间t
y = [ ]; %人口y plot(t,y,'k*');
hold on;
% figure; %重新开一个图
p1 = polyfit(t,y,);
plot(t, polyval(p1, t));
axis([ ]); %图像xy轴范围 disp(char(['y=',poly2str(p1,'t')],['a=',num2str(p1()),' b=',...
num2str(p1()),' c=',num2str(p1())]));
结果如下:
y= 0.0094289 t^ - 34.7482 t + 32061.5711
a=0.0094289 b=-34.7482 c=32061.5711
2. y与t的经验公式为y = a e^(bt)
clear;
clf; %清除当前窗口
clc;
t = ::; %时间t
y = [ ]; %人口y
yy = log(y); %指数基尼必需的线性化变形
p2 = polyfit(t,yy,);
b = p2();
a = exp(p2());
y2 = a * exp(b*t); %指数拟合函数式
plot(t,y,'rp',t,y2,'k-');
grid off;
xlabel('时间t');
ylabel('人口数(百万)');
title('人口数据');